首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
史忠先 《天文学报》1996,37(1):43-50,T003
在一些活动区中,耀斑与光球层磁对消的密切关系,已被观测确认,磁对消先于耀斑几小时到一天,此时,色球视向速度场呈现特定的式样,即在磁环拓扑界面上,出现紫移窄带,而耀斑亮块均落在拓扑界面两边的红移区,这一观测事实支持磁对消为低层大气的磁重联,并证实这种重联与日冕中的能量快速释放有密切关系。  相似文献   

2.
AR6659是22周以来最重要的一个活动区,它爆发了22周最强大的高能事件。本文用云南天文台的光球、色球精细结构照片和北京天文台怀柔站的磁场速度场资料,分析了该活动区磁场速度场的二维位形和大耀斑期间的演化特征,本文分析的4个大耀斑均爆发在中性线附近的N极区磁场梯度大的地方及色球速度场的红移区,偏带观测也显示耀斑物质是向红端移动的。耀斑波沿横场传播在离本黑子群几万至十几万公里的地方激起感生耀斑,在原  相似文献   

3.
AR6659是22周以来最重要的一个活动区,它爆发了22周最强大的高能事件。本文用云南天文台的光球、色球精细结构照片和北京天文台怀柔站的磁场速度场资料,分析了该活动区磁场速度场的二维位形和大耀斑期间的演化特征。本文分析的4个大耀斑均爆发在中性线附近的N极区磁场梯度大的地方及色球速度场的红移区。偏带观测也显示耀斑物质是向红端移动的。耀斑波沿横场传播在离本黑子群几万至十几万公里的地方激起感生耀斑,在原生耀斑与感生耀斑之间往往有耀斑环相连。此外,本文还从演化特征出发分析了耀斑爆发前活动区等离子体的宏观不稳定性。  相似文献   

4.
本文介绍1993年10月2日发生的一个1N/C6.5级耀斑多波段观测的结果.综合比较了耀斑的单色象,Hα波段工维光谱,2840兆赫微波爆发和硬X射线爆发资料.得到Hα单色象上不同亮核的强度变化,与微波及硬X射线暴的时间轮廓比较,给出了色球耀斑区亮度场的演化,对照磁图确定了耀斑区的磁场位形,从而对该耀斑产生和加热提出了一种可能的解释.  相似文献   

5.
报导了云南天文台精细结构望远镜观测到的耀斑前兆相的日冕环的色球足点增亮和兰移现象。两个日冕环的4 个足点由 Yohkoh/ H X H/ S X T 的观测研究所确认。在耀斑前, 色球上与日冕环足点相对应的、分立的点状亮谱斑,其偏带观测显示出兰移, 表明它们是日冕环的色球足点, 且表明存在着物质的预加热, 以及物质从足点沿冕环向上流动。观测还显示冕环所跨越的暗条的激活。这些现象清楚说明, 物质沿磁力线的“蒸发”发生在耀斑前兆相, 而且,色球磁场的剧烈变化可能是引起色球蒸发的原因之一  相似文献   

6.
史忠先  栾蒂 《天文学报》1997,38(3):257-263
本文描述NOAA6233活动区中的一组双带耀斑及和与之有时间相关性的NOAA6240中的单带耀斑的磁场位形.并着重讨论由观测推断出的磁场拓扑联接性.分析表明:三个单耀斑发生在正极磁区里,与发生在δ黑子区中的双带耀斑,可能有远距离磁环相联系.这一高位磁环与δ黑子中的低位剪切磁环柑互作用,可能是能发双带耀斑的直接原因.在双带耀斑能量初始释放中被加速的电子,可能是沿着高位磁环或磁拓扑分界面(NOAA 6240与NOAA6233间)传播,并导致NOAA6240中的单带耀斑.因此这些单带耀斑都可能是双带耀斑的相应耀斑.  相似文献   

7.
黎辉  樊忠玉 《天文学报》1995,36(3):288-294
本文介绍了1993年12月29日一个SF/C1.9耀斑过程的HeI10830A的二维光谱观测和资料的初步分析,主要结果如下:(1)在直接拼出的HeI 10830A单色象上未发现有Rust提出的强度超过连续谱的耀斑亮点,但在剩余强度图上的确发现有四个小区相对周围变亮,其强度在耀斑爆发过程中有明显变化;(2)所有HeI 10830A“亮区”均落在Hα耀斑亮区内,反之则不一定有对应;(3)HeI 108  相似文献   

8.
根据Hα色球和光球磁场资料对AR5395中观测到的耀斑进行分析,致密(Ⅰ型)耀斑的特点是整个磁力线管发亮,横跨在磁性反转线上。双带(Ⅱ型)耀斑的亮块分布在磁性反转线两侧,通常不易看到发亮的磁力线管或环弧系。发生在0244UT,3月9  相似文献   

9.
报导了云南天文台精细结构望远镜观测到的耀斑前兆机的日冕环的色球足点增亮和兰移现象。两个日冕环的4个足点由Yohkoh/HXH/SXT的观测研究所确认因光心斑前,色球上与日冕环足点相对应的,分立的点状亮谱斑,其偏带观测显示出兰移,表明它们是日冕环的色球足点,且表明存在着物质的预加热,以及物质从足点沿冕环上向上流动。观测还显示冕环所跨所跨越的暗条的激少达些现象清楚说明,物质沿磁力线的“蒸发”发生在耀斑  相似文献   

10.
我们首次获得1989年1月18日太阳白光耀斑的二维多波段光谱扫描、及同步的色球Hα单色光和准同步的光球黑子照相观测资料。对部分资料分析表明,该白光耀斑为多块结构,寿命长,主核位于光球磁纵场中性线上或附近,顺色球磁纵场演变,同暗条激活和谱斑密切相关。  相似文献   

11.
Magnetic topology is a powerful tool for constraining certain physical properties of a given magnetic configuration, including the strengths and locations of current sheets, relative helicity and the magnetic free energy available for reconnection. A critical feature of magnetic topology is the separator, a field line bordering several different regions of connectivity. With existing methods, these field lines are at best computationally expensive and at worst impossible to find. A new method is presented for finding the Minimal Separator Set, all of the separators that necessarily exist in a configuration, and to use this information in combination with the optical analogy and a simulated annealing method to ‘cool’ an initial guess for each separator into a good approximation.  相似文献   

12.
利用色球Hα、TRACE/WL、SOHO/EITEuV单色像观测资料及SOHO/MDI光球磁场观测资料,对2003年10月22日太阳活动区AR0484内发生的日浪事件进行了研究.发现:(1)在Ha线心观测上,日浪包含有亮、暗2个分量,这2个分量先后出现而且并不共空间.日浪的亮分量与UV和EUV波段上观测到的喷发具有较好的同时性和共空间性.(2)日浪喷发物质沿着EUV环运动。(3)在光球层,日浪足根处的黑子和磁场有明显的变化.这些观测结果支持日浪的磁重联模型。  相似文献   

13.
This work investigates a typical coronal mass ejection (CME) observed on 2003 February 18, by various space and ground instruments, in white light, Ha, EUV and X-ray. The Ha and EUV images indicate that the CME started with the eruption of a long filament located near the solar northwest limb. The white light coronal images show that the CME initiated with the rarefaction of a region above the solar limb and followed by the formation of a bright arcade at the boundary of the rarefying region at height 0.46 R(?) above the solar surface. The rarefying process synchronized with the slow rising phase of the eruptive filament, and the CME leading edge was observed to form as the latter started to accelerate. The lower part of the filament brightened in Ha as the filament rose to a certain height and parts of the filament was visible in the GOES X-ray images during the rise. These brightenings imply that the filament may be heated by the magnetic reconnection below the filament in the early stage of the eruption. We suggest that a possible mechanism which leads to the formation of the CME leading edge and cavity is the magnetic reconnection which takes place below the filament after the filament has reached a certain height.  相似文献   

14.
The role of null-point reconnection in a three-dimensional numerical magnetohydrodynamic (MHD) model of solar emerging flux is investigated. The model consists of a twisted magnetic flux tube rising through a stratified convection zone and atmosphere to interact and reconnect with a horizontal overlying magnetic field in the atmosphere. Null points appear as the reconnection begins and persist throughout the rest of the emergence, where they can be found mostly in the model photosphere and transition region, forming two loose clusters on either side of the emerging flux tube. Up to 26 nulls are present at any one time, and tracking in time shows that there is a total of 305 overall, despite the initial simplicity of the magnetic field configuration. We find evidence for the reality of the nulls in terms of their methods of creation and destruction, their balance of signs, their long lifetimes, and their geometrical stability. We then show that due to the low parallel electric fields associated with the nulls, null-point reconnection is not the main type of magnetic reconnection involved in the interaction of the newly emerged flux with the overlying field. However, the large number of nulls implies that the topological structure of the magnetic field must be very complex and the importance of reconnection along separators or separatrix surfaces for flux emergence cannot be ruled out.  相似文献   

15.
Various topological features, for example magnetic null points and separators, have been inferred as likely sites of magnetic reconnection and particle acceleration in the solar atmosphere. In fact, magnetic reconnection is not constrained to solely take place at or near such topological features and may also take place in the absence of such features. Studies of particle acceleration using non-topological reconnection experiments embedded in the solar atmosphere are uncommon. We aim to investigate and characterise particle behaviour in a model of magnetic reconnection which causes an arcade of solar coronal magnetic field to twist and form an erupting flux rope, crucially in the absence of any common topological features where reconnection is often thought to occur. We use a numerical scheme that evolves the gyro-averaged orbit equations of single electrons and protons in time and space, and simulate the gyromotion of particles in a fully analytical global field model. We observe and discuss how the magnetic and electric fields of the model and the initial conditions of each orbit may lead to acceleration of protons and electrons up to 2 MeV in energy (depending on model parameters). We describe the morphology of time-dependent acceleration and impact sites for each particle species and compare our findings to those recovered by topologically based studies of three-dimensional (3D) reconnection and particle acceleration. We also broadly compare aspects of our findings to general observational features typically seen during two-ribbon flare events.  相似文献   

16.
A topological model with magnetic reconnection at two separators in the corona is used to account for the recently discovered changes of the photospheric magnetic field in the active region NOAA 9077 during the July 14, 2000 flare. The model self-consistently explains the following observed effects: (1) the magnetic field strength decreases on the periphery of the active region but increases in its inner part near the neutral line of the photospheric magnetic field; (2) the center-of-mass positions of the fields of opposite (northern and southern) polarities converge; and (3) the magnetic flux of the active region decreases after the flare. The topological model gives not only a qualitative interpretation of the flare phenomena (the structure of the interacting magnetic fluxes in the corona, the location of the energy sources, the shape of the flare ribbons and kernels in the chromosphere and photosphere), but also correct quantitative estimates of the large-scale processes that form the basis for solar flares. The electric field emerging in the flare during large-scale reconnection is calculated. The electric field strength correlates with the observed intensity of the hard X-ray bremsstrahlung, suggesting an electron acceleration as a result of reconnection.  相似文献   

17.
Craig  I.J.D.  Wheatland  M.S. 《Solar physics》2002,211(1-2):275-287
The ability of magnetic reconnection solutions to explain statistical flare data is discussed. It is assumed that flares occur at well-defined, isolated sites within an active region, determined by the null points and separators of the coronal magnetic field (Craig, 2001). Statistical flare observations then derive from a multiplicity of independent sites, flaring in parallel, that produce events of widely varying output (Wheatland, 2002). Given that the `separator length' at an individual site controls the event frequency and the mean energy release, it is shown that the observed frequency-energy spectrum N(E)can be inverted to yield a source function that relates directly to the distribution of separator lengths. It is also pointed out that, under the parallel flaring model, inferred waiting-time distributions are naturally interpreted as a superposition of individual point processes. Only a modest number of flaring separators is required to mimic a Poisson process.  相似文献   

18.
Transverse oscillatory motions and recurrence behavior in the chromospheric jets observed by Hinode/SOT are studied. A comparison is considered with the behavior that was noticed in coronal X-ray jets observed by Hinode/XRT. A jet like bundle observed at the limb in Ca II H line appears to show a magnetic topology that is similar to X-ray jets (i.e., the Eiffel tower shape). The appearance of such magnetic topology is usually assumed to be caused by magnetic reconnection near a null point. Transverse motions of the jet axis are recorded but no clear evidence of twist is appearing from the highly processed movie. The aim is to investigate the dynamical behavior of an incompressible magnetic X-point occurring during the magnetic reconnection in the jet formation region. The viscous effect is specially considered in the closed line-tied magnetic X-shape nulls. We perform the MHD numerical simulation in 2-D by solving the visco-resistive MHD equations with the tracing of velocity and magnetic field. A qualitative agreement with Hinode observations is found for the oscillatory and non-oscillatory behaviors of the observed solar jets in both the chromosphere and the corona. Our results suggest that the viscous effect contributes to the excitation of the magnetic reconnection by generating oscillations that we observed at least inside this Ca II H line cool solar jet bundle.  相似文献   

19.
Brown  D.S.  Priest  E.R. 《Solar physics》1999,190(1-2):25-33
It is important to understand the complex topology of the magnetic field in the solar corona in order to be able to comprehend the mechanisms which give rise to phenomena such as coronal loop structures and x-ray bright points. A key feature of the magnetic topology is a separator. A magnetic separator is a field line which connects two magnetic null points, places where the magnetic field becomes zero. A stable magnetic separator is important as it is the intersection of two separatrix surfaces. These surfaces divide the magnetic field lines into regions of different connectivity, so a separator usually borders four regions of field-line connectivity. This work examines the topological behaviour of separators that appear in a magnetic field produced by a system of magnetic sources lying in a plane (the photosphere). The questions of how separators arise and are destroyed, the topological conditions for which they exist, how they interact and their relevance to the coronal magnetic field are addressed.  相似文献   

20.
Priest  E.R.  Schrijver  C.J. 《Solar physics》1999,190(1-2):1-24
In this review paper we discuss several aspects of magnetic reconnection theory, focusing on the field-line motions that are associated with reconnection. A new exact solution of the nonlinear MHD equations for reconnective annihilation is presented which represents a two-fold generalization of the previous solutions. Magnetic reconnection at null points by several mechanisms is summarized, including spine reconnection, fan reconnection and separator reconnection, where it is pointed out that two common features of separator reconnection are the rapid flipping of magnetic field lines and the collapse of the separator to a current sheet. In addition, a formula for the rate of reconnection between two flux tubes is derived. The magnetic field of the corona is highly complex, since the magnetic carpet consists of a multitude of sources in the photosphere. Progress in understanding this complexity may, however, be made by constructing the skeleton of the field and developing a theory for the local and global bifurcations between the different topologies. The eruption of flux from the Sun may even sometimes be due to a change of topology caused by emerging flux break-out. A CD-ROM attached to this paper presents the results of a toy model of vacuum reconnection, which suggests that rapid flipping of field lines in fan and separator reconnection is an essential ingredient also in real non-vacuum conditions. In addition, it gives an example of binary reconnection between a pair of unbalanced sources as they move around, which may contribute significantly to coronal heating. Finally, we present examples in TRACE movies of geometrical changes of the coronal magnetic field that are a likely result of large-scale magnetic reconnection. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1005248007615  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号