首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
施氮和玉米生长对土壤氧化亚氮排放的影响   总被引:13,自引:2,他引:11  
运用土壤盆栽试验、静态箱法采样和气相色谱分析技术研究了种植玉米土壤和裸土在两种土壤施氮水平 (低氮:150 mg·kg-1土,和高氮:300 mg·kg-1土) 下对土壤排放N2O的影响.结果表明,在种植玉米的土壤中,N2O排放率的峰值出现在苗期,且氮肥施用量的影响显著,土壤N2O排放率与温度没有显著的相关性.在裸土中,土壤N2O排放率的峰值出现在试验后期,土壤N2O排放率与温度呈极显著指数相关.土壤施氮量增加,土壤N2O排放总量增加,裸土N2O增加尤其显著,种植玉米比裸土减少87%~92%的N2O排放量.这一结果表明种植作物与否,不仅改变了土壤N2O排放的季节变化和排放量,而且改变了温度与土壤N2O排放之间的关系.  相似文献   

2.
 2007年6~10月, 采用静态箱-气相色谱法, 同步研究了小兴安岭典型修氏苔草(Carex schmidtii)沼泽湿地CO2、CH4和N2O排放通量的季节动态及其与环境因子的关系, 估算了CO2、CH4和N2O的生长季排放量, 探讨了沼泽湿地碳与氮的源汇关系。结果表明: 草丛沼泽生长季节温室气体排放量以CO2占绝对优势(99.61%), CH4的排放量次之(0.39%), N2O的排放量最低(0.000 7%), 且为碳、氮的吸收汇(分别为固定量的53.93%和0.04%); CO2、CH4和N2O生长季平均排放通量依次为487.89、1.88和0.004 mg·m–2·h–1, 且具有明显的季节变化特征, CO2和N2O的最高排放量均出现在夏季(6月24日至8月14日和7月14日至8月14日), CH4的最高排放量出现在夏秋季(8月24日至9月24日), 其中, CO2季节变化与空气温度和0~20 cm土壤温度具有显著相关性(p < 0.05), CH4与空气温度具有显著相关性(p < 0.01), N2O与水位具有显著的负相关性(p < 0.05)。  相似文献   

3.
川中丘陵区冬灌田甲烷和氧化亚氮排放研究   总被引:18,自引:4,他引:14  
采用静态暗箱/气相色谱法对川中丘陵区冬灌田CH4和N2O排放特征进行连续一年的田间原位测定.结果表明,种植水稻区(种植区)在水稻生长季平均CH4排放速率为22.76±2.76 mg·m-2·h-1,休闲期平均为1.43±0.20 mg·m-2·h-1,全年平均为9.64±1.17 mg·m-2·h-1;全年CH4排放主要集中在水稻生长季,其累计CH4排放量占全年总CH4排放量的91.2%未种植水稻区(对照区) 全年CH4平均排放速率为2.03±0.18 mg·m-2·h-1,水稻生长季CH4排放量占全年总排放量的86.2%.N2O的排放在稻田落干时呈现脉冲排放.在水稻生长季,对照区CH4和N2O的季节排放速率分别为4.53±0.38mg·m-2·h-1和32.01±5.02 μg·m-2·h-1,而种植区则分别为22.76±2.76 mg·m-2·h-1和73.04±5.03 μg·m-2·h-1,植株参与导致CH4和N2O排放速率分别增加302%和128%.CH4和N2O的排放随土水分条件的变化呈互为消长关系.在冬灌田中,即使考虑500年的时间尺度,全年N2O排放产生的全球增温潜势也只有CH4的7.9%,与CH4相比,冬灌田排放的N2O所产生的温室效应很小.  相似文献   

4.
应用C2H2抑制原状土柱培育法研究了三江平原典型小叶章湿地土壤N2O排放速率及反硝化速率的变化,分析了它们与环境因子的关系,并估算了N2O排放量及反硝化损失量.结果表明:草甸沼泽土和腐殖质沼泽土N2O排放速率的变化基本一致,其范围分别为0.020~0.089 kg N·hm-2·d-1和0.012~0.033 kg N·hm-2·d-1,前者的N2O排放速率均明显高于后者(平均为1.79±1.07倍),且其差异达到显著水平(P<0.05);二者反硝化速率的变化并不一致,其范围分别为0.024~0.127 kg N·hm-2·d-1和0.021~0.043 kg N·hm-2·d-1,前者的反硝化速率一般也要高于后者(平均为1.67±1.56倍),但其差异并未达到显著水平(P>0.05);硝化作用在前者N2O排放和氮素损失过程中发挥了重要作用,而反硝化作用则是导致后者N2O排放和氮素损失的重要过程;氮素物质基础不是影响二者硝化-反硝化作用的重要因素;温度对前者硝化 反硝化作用的影响比后者更为明显,其反硝化速率与5、10和15 cm地温均呈显著正相关(P<0.05);二者所处湿地水分条件的差异是导致其N2O排放速率及反硝化速率差异的重要原因.生长季内,前者的N2O排放量和反硝化损失量分别为5.216 kg N·hm-2和6.166 kg N·hm-2,而后者分别为3.196 kg N·hm-2和4.407 kg N·hm-2;在二者的反硝化产物中,N2O/N2的比率最高,分别为5.49和3.76,表明N2在后者反硝化产物中所占的比例明显高于前者,说明季节积水条件会导致N2O/N2比例降低.  相似文献   

5.
采用静态箱-气相色谱法对菜地、旱地、林地、果园、水改旱土壤N2O排放特征及其相关影响因子进行研究.结果表明:不同土地利用方式下土壤N2O的排放通量在-21~435 μg·m-2·h-1之间变化,N2O年排放总量为菜地>果园>旱地>水改旱>林地,分别为447.14、313.57、167.00、124.87和7.24 mg·m-2.土壤N2O排放通量呈现明显的季节性变化,以春夏季最高,秋季次之,冬季最低,并与对应的大气及土壤温度的变化趋势基本一致.N2O排放通量与5 cm土壤温度及土壤硝态氮含量呈显著或极显著正相关,与土壤水分及土壤铵态氮含量无明显相关关系.  相似文献   

6.
外源氮对沼泽湿地CH4和N2O通量的影响   总被引:1,自引:0,他引:1  
三江平原沼泽湿地受到大气沉降、地表径流、农业排水等外源氮素的输入,对湿地生态系统CH4和N2O通量有重要影响。采用野外原位施肥试验模拟外源氮输入,设0,60,120,240kgN•hm-2 4种试验处理,探讨外源氮对沼泽湿地CH4和N2O通量的影响。结果表明,外源氮促进了CH4和N2O排放。与对照处理比较,各施氮水平CH4平均排放通量分别增加了181%,254%和155%,N2O排放通量分别增加了21%,100%和533%。外源氮输入对CH4排放的季节变化形式影响不大,而N2O的季节变化形式随着氮输入表现出波动变化的趋势。不同施氮水平对CH4排放的促进作用与植物生长阶段和产CH4的微生物过程密切相关,N2O排放通量随氮输入量呈指数增加(R2=0.97,p<0.01)。外源氮通过影响湿地微生物过程来进一步影响CH4和N2O的排放。  相似文献   

7.
华南丘陵区冬闲稻田二氧化碳、甲烷和氧化亚氮的排放特征   总被引:11,自引:0,他引:11  
采用静态箱 气相色谱法对收获后冬闲稻田CO2、CH4和N2O排放进行了田间原位测定,探讨了越冬稻田3种温室气体的排放规律.结果表明,残茬稻田和裸田的CO2的排放峰值分别出现在18:00和16:00左右.日间CH4排放为净值,夜间表现为弱吸收.残茬稻田和裸田N2O夜间排放分别为日间平均的1.79和1.58倍.残茬稻田的昼夜CO2平均排放通量显著高于裸田(P<0.05).在测定期间,残茬稻田CO2排放随温度升高而增高.相关分析表明,CO2排放与土温、地表温度和气温均呈显著相关,表明温度是影响收获后稻田CO2排放的主要因素.在11月10日至翌年1月18日测定期间,残茬稻田的CO2和CH4平均排放通量分别为(180.69±21.21) mg·m-2·h-1和(-0.04±0.01) mg·m-2·h-1,CO2排放通量较裸田高13.06%,CH4吸收增高50%.残茬稻田的N2O排放通量为(21.26±19.31) μg·m-2·h-1,较裸田低60.75%.由此说明华南丘陵区冬闲稻田是大气CO2和N2O的源,CH4的汇.  相似文献   

8.
三江平原典型沼泽湿地氧化亚氮通量   总被引:16,自引:2,他引:14  
2002~2004年利用静态箱-气相色谱法对三江平原3种具有代表性的湿地类型(常年积水的毛果苔草沼泽、季节性积水的小叶章湿草甸和常年土壤过湿的灌丛湿地)进行了为期两年半的N2O现场观测研究.结果表明,三江平原3种类型湿地N2O通量均有明显的季节变化和年际变化,一般在非冰冻期表现为排放,冰雪覆盖期表现为微弱的吸收.生长季的N2O通量以灌丛湿地N2O排放通量最大,毛果苔草沼泽最小.全年平均N2O交换通量: 毛果苔草沼泽为53.928 mg·m-2·yr-1,小叶章湿地为21.408 mg·m-2·yr-1,灌丛湿地为657.120 mg·m-2·yr-1,证明沼泽湿地是大气N2O的源.3种类型湿地生长季N2O通量无明显的日变化,与温度的相关性不大.  相似文献   

9.
黄河上游灌区稻田N2O排放特征   总被引:4,自引:0,他引:4  
黄河上游灌区稻田高产区过量施肥现象十分突出,氮肥过量施用引起土壤氮素盈余,导致N2O排放量增大,由此引起的温室效应引起广泛关注。采用静态箱-气相色谱法研究黄河上游灌区稻田不同施肥处理下N2O排放特征。试验设置5个施肥处理,包括常规氮肥300 kg/hm2下单施尿素和有机肥配施2个处理,分别用N300和N300-OM代表;优化氮肥240 kg/hm2下单施尿素和有机肥配施2个处理,分别用N240和N240-OM代表;对照不施氮肥用N0代表。试验结果得出,灌区水稻生长季稻田土壤N2O排放主要集中在水稻分蘖前及水稻生长的中后期,稻田氮肥施用、灌水及土壤温度的变化对N2O排放通量影响较大,不同处理水稻各生育阶段N2O累积排放量与稻田土壤耕层NO-3-N含量动态变化显著相关。稻田N2O排放不是黄河上游灌区稻田氮素损失的主要途径,但灌区稻田N2O排放的增温潜势较大;稻田氮肥过量施用会显著增加N2O排放量,在相同氮素水平下,有机肥配施会显著增加稻田土壤N2O的排放量(P<0.01)。优化施氮能有效减少灌区稻田水稻生长季N2O排放量。稻田不同处理的水稻整个生长季土壤N2O排放总量为2.69-3.87 kg/hm2,肥料氮通过N2O排放损失的百分率仅为0.43%-0.64%。在灌区习惯灌水和高氮肥300 kg/hm2时,N300-OM处理的稻田N2O排放量达3.87 kg/hm2,在100 a时间尺度上的全球增温潜势(GWPs)为20.76×107 kg CO2/hm2;优化施氮240 kg/hm2水平下,N240和N240-OM处理的N2O累计排放量较N300-OM处理,分别降低了1.18 kg/hm2和0.57 kg/hm2,在100 a尺度上每年由稻田N2O排放引起的GWPs分别降低了6.33×107 kg CO2/hm2和3.06×107 kg CO2/hm2。  相似文献   

10.
淡水生态系统是大气中N2O的重要排放源,受到国内外广泛关注。城市小型景观水体作为区域淡水系统的重要组成,具有环境容量小,受人类活动干扰强烈,其N2O排放特征及影响机制并不清楚。选择重庆大学城8个典型景观水体和2个城市外围的自然水体(对照)作为研究对象,利用顶空法和漂浮箱法对水体溶存N2O浓度及排放通量进行季节性监测,并通过分析生境特征及水环境特征,探究城市小型景观水体N2O排放特征及关键影响因素。结果表明:1)小型景观水体TN、NO3--N、NH4+-N、NO2--N含量总体偏低但变异性极强(变化范围分别为0.31-1.47 mg/L、0.05-0.79 mg/L、0.03-0.14 mg/L、0.00-0.04 mg/L),硝态氮是主要的氮形态;景观水体氮丰度远高于外围的自然水体;2)10个小型水体N2O浓度范围为16.51-158.96 nmol/L,平均为(47.60±21.47) nmol/L,均处于过饱和状态;漂浮箱法实测8个景观水体N2O排放通量均值为(0.13±0.05)mmol m-2 d-1,是对照水体的1.3-5.2倍,高于大部分已有研究结果,是大气N2O的排放热源;3)景观水体N2O排放通量与水体各形态氮含量呈显著的正相关关系,较高的N负荷和强烈的氮转化过程是导致景观水体成为N2O排放热源的主要因子,水体N含量可以作为景观水体N2O排放强度的有效指示因子;同时水生植物分布对水体N2O排放影响显著,有植物分布的水域比开敞水域高1.4倍;4)漂浮箱法和边界层模型法对小型景观水体N2O排放通量的监测结果呈较好的线性关系,但不同季节仍存在着一定差异,需要进一步优化模型估算方法;5)水体N2O排放通量对温度的季节性变化较为敏感,呈夏季最高,春、秋季次之,冬季最低的季节模式。本研究强调,城市小型景观水体具有较高的N2O排放速率,在区域氮循环及全球淡水系统温室气体排放清单中具有不可忽视的作用,在未来研究中应得到更多关注。  相似文献   

11.
The intensity of nitrous oxide (N2O) emission was considered based on literature data on the single input of mineral N (nitrogen) fertilizers into different agricultural soil types in Russia. Ambient environmental factors exert a combined effect on the process of gaseous nitrogen formation from fertilizers applied. To reduce the uncertainty of estimates as much as possible, only experimental results obtained under conditions similar to natural were selected for the assessments. Mineral nitric fertilizers were applied to soil at a rate of 40 to 75 kg/ha and the N2O emissions were measured for approximately 140 days. Daily average emission values varied from 0.08 to 0.45% of fertilizer nitrogen. Correspondingly, 1.26 and 2.38% of fertilizer nitrogen were emitted as N2O from chernozems and soddy podzols. In 1990, the use of fertilizers in Russian agricultural practices for 53 Gg N2O-N, which equates to approximately 6.1% of global nitrous oxide emissions from nitric fertilizers. Later, the emission dropped because of a decrease in the input of nitric fertilizers to agricultural crops, and in 1998, it constituted just 20.5% of the 1990 level. In the period from 2008 to 2012, the nitrous oxide emission is expected to vary from 0.5 to 65.0 Gg N2O-N due to possible changes in national agricultural development. In the most likely scenario, the use of mineral fertilizers in Russia will account for approximately 34 to 40 Gg N2O-N emissions annually from 2008-2012.  相似文献   

12.

Aims

A field experiment was conducted to quantify annual nitrous oxide (N2O) fluxes from control and fertilized plots under open-air and greenhouse vegetable cropping systems in southeast China. We compiled the reported global field annual N2O flux measurements to estimate the emission factor of N fertilizer for N2O and its background emissions from vegetable fields.

Methods

Fluxes of N2O were measured using static chamber-GC techniques over the 2010–2011 annual cycle with multiple cropping seasons.

Results

The mean annual N2O fluxes from the controls were 46.1?±?2.3 μg N2O-N m?2 hr?1 and 68.3?±?4.1 μg N2O-N m?2 hr?1 in the open-air and greenhouse vegetable systems, respectively. For the plots receiving 900 kg?N?ha?1, annual N2O emissions averaged 90.6?±?8.9 μg N2O-N m?2 hr?1 and 106.4?±?6.6 μg N2O-N?m?2 hr?1 in the open-air and greenhouse vegetable systems, respectively. By pooling published field N2O flux measurements taken over or close to a full year, the N2O emission factor for N fertilizer averaged 0.63?±?0.09 %, with a background emission of 2.67?±?0.80 kg N2O-N ha?1 in Chinese vegetable fields. Annual N2O emissions from Chinese vegetable systems were estimated to be 84.7 Gg N2O-N yr?1, consisting of 72.5 Gg N2O-N yr?1 and 12.2 Gg N2O-N yr?1 in the open-air and greenhouse vegetable systems, respectively.

Conclusions

While N2O emissions from the greenhouse vegetable cropping system tended to be slightly higher compared to the open-air system in our experiment, the synthesis of literature data suggests that N2O emissions would be greater at low N-rates but smaller at high N-rates in greenhouse systems than in open-air vegetable cropping systems. The estimates of this study suggest that vegetable cropping systems covering 11.4 % in national total cropping area, contributed 21–25 % to the total N2O emission from Chinese croplands.  相似文献   

13.
Signatories of the Kyoto Protocol are obliged to submit annual accounts of their anthropogenic greenhouse gas emissions, which include nitrous oxide (N(2)O). Emissions from the sectors industry (3.8 Gg), energy (14.4 Gg), agriculture (86.8 Gg), wastewater (4.4 Gg), land use, land-use change and forestry (2.1 Gg) can be calculated by multiplying activity data (i.e. amount of fertilizer applied, animal numbers) with simple emission factors (Tier 1 approach), which are generally applied across wide geographical regions. The agricultural sector is the largest anthropogenic source of N(2)O in many countries and responsible for 75 per cent of UK N(2)O emissions. Microbial N(2)O production in nitrogen-fertilized soils (27.6 Gg), nitrogen-enriched waters (24.2 Gg) and manure storage systems (6.4 Gg) dominate agricultural emission budgets. For the agricultural sector, the Tier 1 emission factor approach is too simplistic to reflect local variations in climate, ecosystems and management, and is unable to take into account some of the mitigation strategies applied. This paper reviews deviations of observed emissions from those calculated using the simple emission factor approach for all anthropogenic sectors, briefly discusses the need to adopt specific emission factors that reflect regional variability in climate, soil type and management, and explains how bottom-up emission inventories can be verified by top-down modelling.  相似文献   

14.
Development of appropriate land management techniques to attain sustainability and increase the N use efficiency of crops in the tropics has been gaining momentum. The nitrous oxides (N2Os) affect global climate change and its contribution from N and C management systems is of great significance. Thus, N transformations and N2O emission during maize-groundnut crop rotation managed with various N sources were studied. Accumulation of nitrate (NO3- ) and its disappearance happened immediately after addition of various N sources, showing liming effect. The mineral N retained for 2-4 weeks depending on the type and amount of N application. The chicken manure showed rapid nitrification in the first week after application during the fallow period, leading to a maximum N2O flux of 9889 g N2O-N m(-2) day(-1). The same plots showed a residual effect by emitting the highest N2O (4053 microg N2O-N m(-2) day(-1)) during maize cultivation supplied with a half-rate of N fertilizer. Application of N fertilizer only or in combination with crop residues exhibited either lowered fluxes or caused a sink during the groundnut and fallow periods due to small availability of substrates and/or low water-filled pore space (<40%). The annual N2O emission ranged from 1.41 to 3.94 kg N2O-N ha(-1); the highest was estimated from the chicken manure plus crop residues and half-rate of inorganic N-amended plots. Results indicates a greater influence of chicken manure on the N transformations and thereby N2O emission.  相似文献   

15.
农田氧化亚氮排放系数的研究   总被引:16,自引:1,他引:15  
通过调研多年来国内外农田N2O排放的研究结果,建立了农田N2O年度排放数据库,并分析了N2O排放与各环境因子之间的关系.相关分析表明,N2O排放与温度及降水呈显著正相关,与土壤pH值、有机碳及氮含量无显著相关.依据政府间气候变化专门委员会对农田N2O排放系数的定义和确定方法,用年平均气温及降水量对其进行修正.结果表明,经平均气温修正后的排放系数并不减小农田N2O排放的估计误差,但用年降水量进行修正后能减小平均相对误差16%左右.  相似文献   

16.
王川  高伟  周丰  陈琼  营娜  徐鹏  后希康 《生态学杂志》2013,24(10):2983-2992
畜禽粪便是我国N2O两个最大排放源之一.为建立我国畜禽粪便N2O高分辨率排放清单,选择2008年县域尺度活动数据、具有空间分异性的本土排放因子和参数来评估其排放规模、组分结构、空间格局及不确定性.与基于IPCC、EDGAR等研究结果相比,该排放清单具有更好的可靠性和全面性.我国畜禽粪便2008年N2O排放总量为572 Gg,其中除了牧场草地粪便之外的畜禽粪便为322 Gg(56.3%),牧场草地畜禽粪便为180 Gg(31.5%),挥发沉降和淋溶径流造成的间接排放分别为45.8 Gg(8.0%)和1.23 Gg(0.2%);排放格局非常集中,主要分布在东北三省、山东、四川、湖南和河南,其累积规模为全国总量的52.4%,其中近50%贡献源于占全国县域数<3%的84个县(区、市、旗);所建立排放清单具有较高的空间分辨率和准确度.与此相比,IPCC对直接排放存在低估,对间接排放存在高估,对排放总量高值区存在低估(-1.5%~-6.0%),低值区存在高估(1.6%~13%);对于贡献最大的排放途径,EDGAR在高值区低估达到-18.8%~-50.0%,在大部分低值区高估达到25%~54.1%.  相似文献   

17.
畜禽粪便是我国N2O两个最大排放源之一.为建立我国畜禽粪便N2O高分辨率排放清单,选择2008年县域尺度活动数据、具有空间分异性的本土排放因子和参数来评估其排放规模、组分结构、空间格局及不确定性.与基于IPCC、EDGAR等研究结果相比,该排放清单具有更好的可靠性和全面性.我国畜禽粪便2008年N2O排放总量为572 Gg,其中除了牧场草地粪便之外的畜禽粪便为322 Gg(56.3%),牧场草地畜禽粪便为180 Gg(31.5%),挥发沉降和淋溶径流造成的间接排放分别为45.8 Gg(8.0%)和1.23 Gg(0.2%);排放格局非常集中,主要分布在东北三省、山东、四川、湖南和河南,其累积规模为全国总量的52.4%,其中近50%贡献源于占全国县域数<3%的84个县(区、市、旗);所建立排放清单具有较高的空间分辨率和准确度.与此相比,IPCC对直接排放存在低估,对间接排放存在高估,对排放总量高值区存在低估(-1.5%~-6.0%),低值区存在高估(1.6%~13%);对于贡献最大的排放途径,EDGAR在高值区低估达到-18.8%~-50.0%,在大部分低值区高估达到25%~54.1%.  相似文献   

18.
采用静态箱法,现场监测黏土和砂土覆盖层生活垃圾填埋场N2O释放通量的春夏季节及昼夜变化,研究渗滤液灌溉、覆土土质对填埋场N2O释放的影响.结果表明:砂土和黏土覆盖层填埋场N2O夏季的释放通量均值分别为(242±576)和(591±767) μg N2ON·m-2·h-1,是春季[分别为(74.4±314)和(269±335) μg N2ON·m-2·h-1]的3.2(P>0.05)和2.2倍(P<0.05).渗滤液灌溉促进了砂土填埋场覆土N2O的释放,填埋场中灌溉区N2O的释放通量为无灌溉区的2倍(P>0.05).渗滤液灌溉的砂土覆盖层填埋场N2O春夏两季释放通量均值[(211±460) μg N2ON·m-2·h-1]仅为无渗滤液灌溉的黏土覆盖层填埋场[(430±605) μg N2ON·m-2·h-1]的1/2(P>0.05).无论渗滤液灌溉与否,选择贫瘠的砂性覆盖土均有助于减少生活垃圾填埋场N2O释放.  相似文献   

19.
In this paper we discuss three topics concerning N2O emissions from agricultural systems. First, we present an appraisal of N2O emissions from agricultural soils (Assessment). Secondly, we discuss some recent efforts to improve N2O flux estimates in agricultural fields (Measurement), and finally, we relate recent studies which use nitrification inhibitors to decrease N2O emissions from N-fertilized fields (Mitigation).To assess the global emission of N2O from agricultural soils, the total flux should represent N2O from all possible sources; native soil N, N from recent atmospheric deposition, past years fertilization, N from crop residues, N2O from subsurface aquifers below the study area, and current N fertilization. Of these N sources only synthetic fertilizer and animal manures and the area of fields cropped with legumes have sufficient global data to estimate their input for N2O production. The assessment of direct and indirect N2O emissions we present was made by multiplying the amount of fertilizer N applied to agricultural lands by 2% and the area of land cropped to legumes by 4 kg N2O-N ha-1. No regard to method of N application, type of N, crop, climate or soil was given in these calculations, because the data are not available to include these variables in large scale assessments. Improved assessments should include these variables and should be used to drive process models for field, area, region and global scales.Several N2O flux measurement techniques have been used in recent field studies which utilize small and ultralarge chambers and micrometeorological along with new analytical techniques to measure N2O fluxes. These studies reveal that it is not the measurement technique that is providing much of the uncertainty in N2O flux values found in the literature but rather the diverse combinations of physical and biological factors which control gas fluxes. A careful comparison of published literature narrows the range of observed fluxes as noted in the section on assessment. An array of careful field studies which compare a series of crops, fertilizer sources, and management techniques in controlled parallel experiments throughout the calendar year are needed to improve flux estimates and decrease uncertainty in prediction capability.There are a variety of management techniques which should conserve N and decrease the amount of N application needed to grow crops and to limit N2O emissions. Using nitrification inhibitors is an option for decreasing fertilizer N use and additionally directly mitigating N2O emissions. Case studies are presented which demonstrate the potential for using nitrification inhibitors to limit N2O emissions from agricultural soils. Inhibitors may be selected for climatic conditions and type of cropping system as well as the type of nitrogen (solid mineral N, mineral N in solution, or organic waste materials) and applied with the fertilizers.  相似文献   

20.
The increasing atmospheric N2O concentration and the imbalance in its global budget have triggered the interest in quantifying N2O fluxes from various ecosystems. This study was conducted to estimate the annual N2O emissions from a transitional grassland-forest region in Saskatchewan, Canada. The study region was stratified according to soil texture and land use types, and we selected seven landscapes (sites) to cover the range of soil texture and land use characteristics in the region. The study sites were, in turn, stratified into distinguishable spatial sampling units (i.e., footslope and shoulder complexes), which reflected the differences in soils and soil moisture regimes within a landscape. N2O emission was measured using a sealed chamber method. Our results showed that water-filled pore space (WFPS) was the variable most correlated to N2O fluxes. With this finding, we estimated the total N2O emissions by using regression equations that relate WFPS to N2O emission, and linking these regression equations with a soil moisture model for predicting WFPS. The average annual fluxes from fertilized cropland, pasture/hay land, and forest areas were 2.00, 0.04, and 0.02 kg N2O-N ha–1 yr–1, respectively. The average annual fluxes for the medium- to fine-textured and sandy-textured areas were 1.40 and 0.04 kg N2O-N ha–1 yr–1, respectively. The weighted-average annual flux for the study region is 0.95 kg N2O-N ha–1yr–1. The fertilized cropped areas covered only 47% of the regional area but contributed about 98% of the regional flux. We found that in the clay loam, cropped site, 2% and 3% of the applied fertilizer were emitted as N2O on the shoulders and footslopes, respectively.Contribution no. R824 of Saskatchewan Center for Soil Research, Saskatoon, Saskatchewan, Canada  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号