首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cu(In,Ga)Se2 (CIGS) and related semiconducting compounds have demonstrated their high potential for high-efficiency thin-film solar cells. The highest efficiency for CIGS-based thin-film solar cells has been achieved with CdS buffer layers prepared by a solution growth method known as chemical bath deposition (CBD). With the aim of developing Cd-free chalcopyrite-based thin-film solar cells, Zn(Se,OH)x buffer layers were deposited by CBD on polycrystalline Cu(In,Ga)(S,Se)2 (CIGSS). A total-area conversion efficiency of 13·7% was certified by the Frauenhofer Institute for Solar Energy Systems. The CIGSS absorber was fabricated by Siemens Solar Industries (California). For device optimization, the thickness and good surface coverage were controlled by XPS–UPS photoemission spectroscopy. A Zn(Se,OH)x thickness below 7 nm has been found to be optimum for achieving a homogeneous and compact buffer film on CIGSS, with open-circuit photovoltage Voc=535 mV, fill factor FF=70·76% and a high short-circuit photocurrent density Jsc=36·1 mA cm−2. Copyright © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
This paper is focused on the basic study and optimization of short time (<10 min) Chemical Bath Deposition (CBD) of Zn(S,O,OH) buffer layers in co‐evaporated Cu(In,Ga)Se2 (CIGSe) and electrodeposited CuIn(S,Se)2 ((ED)‐CIS) solar cells for industrial applications. First, the influence of the deposition temperature is studied from theoretical solution chemistry considerations by constructing solubility diagrams of ZnS, ZnO, and Zn(OH)2 as a function of temperature. In order to reduce the deposition time under 10 min, experimental growth deposition studies are then carried out by the in situ quartz crystal microgravimetry (QCM) technique. An optimized process is performed and compared to the classical Zn(S,O,OH) deposition. The morphology and composition of Zn(S,O,OH) films are determined using SEM and XPS techniques. The optimized process is tested on electrodeposited‐CIS and co‐evaporated‐CIGSe absorbers and cells are completed with (Zn,Mg)O/ZnO:Al windows layers. Efficiencies similar or even better than CBD CdS/i‐ZnO reference buffer layers are obtained (15·7% for CIGSe and 8·1% for (ED)‐CIS). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Recent progress in fabricating Cd‐ and Se‐free wide‐gap chalcopyrite thin‐film solar devices with Zn(S,O) buffer layers prepared by an alternative chemical bath process (CBD) using thiourea as complexing agent is discussed. Zn(S,O) has a larger band gap (Eg = 3·6–3·8 eV) than the conventional buffer material CdS (Eg = 2·4 eV) currently used in chalcopyrite‐based thin films solar cells. Thus, Zn(S,O) is a potential alternative buffer material, which already results in Cd‐free solar cell devices with increased spectral response in the blue wavelength region if low‐gap chalcopyrites are used. Suitable conditions for reproducible deposition of good‐quality Zn(S,O) thin films on wide‐gap CuInS2 (‘CIS’) absorbers have been identified for an alternative, low‐temperature chemical route. The thickness of the different Zn(S,O) buffers and the coverage of the CIS absorber by those layers as well as their surface composition were controlled by scanning electron microscopy, X‐ray photoelectron spectroscopy, and X‐ray excited Auger electron spectroscopy. The minimum thickness required for a complete coverage of the rough CIS absorber by a Zn(S,O) layer deposited by this CBD process was estimated to ∼15 nm. The high transparency of this Zn(S,O) buffer layer in the short‐wavelength region leads to an increase of ∼1 mA/cm2 in the short‐circuit current density of corresponding CIS‐based solar cells. Active area efficiencies exceeding 11·0% (total area: 10·4%) have been achieved for the first time, with an open circuit voltage of 700·4 mV, a fill factor of 65·8% and a short‐circuit current density of 24·5 mA/cm2 (total area: 22·5 mA/cm2). These results are comparable to the performance of CdS buffered reference cells. First integrated series interconnected mini‐modules on 5 × 5 cm2 substrates have been prepared and already reach an efficiency (active area: 17·2 cm2) of above 8%. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
A comparative study of chemical bath deposition (CBD) of ZnS, CdS, and a mixture of (Cd,Zn)S buffer layers has been carried out on electrodeposited CuIn(S,Se)2 (CISSe) and coevaporated Cu(In,Ga)Se2 (CIGS) absorbers. For an optimal bath composition with the ratio of [Zn]/[Cd] = 25, efficiencies higher than those obtained with CdS and ZnS recipes, both on co‐evaporated CIGS and electrodeposited CISSe, have been obtained independent of the absorber used. In order to better understand the (Cd,Zn)S system and its impact on the increased efficiency of cells, predictions from the solubility diagrams of CdS and ZnS in aqueous medium were made. This analysis was completed by in situ growth studies with varying bath composition by quartz crystal microbalance (QCM). The morphology and composition of the films were studied using scanning electron microscopy (SEM) and X‐ray photoelectron spectra (XPS) techniques. Preliminary XPS studies showed that films are composed of a mixture of CdS and Zn(O,OH) phases and not a pure ternary Cd1 − xZnxS compound. The effect of the [Zn]/[Cd] molar ratio on properties of the corresponding CISSe and CIGS solar cells was investigated by current voltage [J(V)] and capacitance voltage [C(V)] characterizations. The origin of optimal results is discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Chemical bath deposited (CBD)Zn(S,O,OH) is among the alternatives to (CBD)CdS buffer layers in Cu(In,Ga)Se2(CIGSe)‐based devices. Nevertheless, the performances reached by devices buffered with (CBD)Zn(S,O,OH) vary strongly from one sample to another and from one laboratory to another, indicating that parameters of minority impact with (CBD)CdS‐buffered devices have major influence when buffered with (CBD)Zn(S,O,OH). Moreover, the literature reports, but not systematically, the requirement of substituting the standard resistive intrinsic ZnO by (Zn,Mg)O and/or soaking the devices in ultraviolet‐containing light in order to reach optimal device operation. The present study investigates the impact of the three following parameters on the optoelectronic behavior of the Cu(In,Ga)Se2/(CBD)Zn(S,O,OH)/i‐ZnO‐based solar cells: (i) CIGSe surface composition; (ii) (CBD)Zn(S,O,OH) layer thickness; and (iii) i‐ZnO layer resistivity. The first conclusion of this study is that all of these parameters are observed to influence the electrical metastabilities of the devices. The second conclusion is that the light soaking time needed to achieve optimal photovoltaic parameters is decreased by (i) using absorbers with Cu content close to stoichiometry, (ii) increasing the buffer layer thickness, and (iii) increasing the resistivity of i‐ZnO. By optimizing these trends, stable and highly efficient Zn(S,O,OH)‐buffered CIGSe solar cells have been fabricated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
A surface treatment by evaporated selenium on Cu(In,Ga)Se2 (CIGS) is shown to improve open circuit voltage, Voc, and in some cases fill factor, FF, in solar cells with CdS, (Zn,Mg)O or Zn(O,S) buffer layers. Voc increases with increasing amount of crystalline Se, while FF improves only for small amounts. The improvements are counteracted by a decreasing short circuit current assigned to absorption in hexagonal Se. Improved efficiency is shown for device structures with (Zn,Mg)O and Zn(O,S) buffer layers by atomic layer deposition. Analysis by grazing incidence X‐ray diffraction and photoelectron spectroscopy show partial coverage of the CIGS surface by hexagonal selenium. The effects on device performance from replacing part of the CIGS/buffer interface area by a Se/buffer junction are discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
A ZnS/Zn1‐xMgxO buffer combination was developed to replace the CdS/i‐ZnO layers in in‐line co‐evaporated Cu(In,Ga)Se2(CIGS)‐based solar cells. The ZnS was deposited by the chemical bath deposition (CBD) technique and the Zn1‐xMgxO layer by RF magnetron sputtering from ceramic targets. The [Mg]/([Mg] + [Zn]) ratio in the target was varied between x = 0·0 and 0·4. The composition, the crystal structure, and the optical properties of the resulting layers were analyzed. Small laboratory cells and 10 × 10 cm2 modules were realized with high reproducibility and enhanced stability. The transmission is improved in the wavelength region between 330 and 550 nm for the ZnS/Zn1‐xMgxO layers. Therefore, a large gain in the short‐circuit current density up to 12% was obtained, which resulted in higher conversion efficiencies up to 9% relative as compared to cells with the CdS/i‐ZnO buffer system. Peak efficiencies of 18% with small laboratory cells and 15·2% with 10 × 10 cm2 mini‐modules were demonstrated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
We report the development of Cd‐free buffers by atomic layer deposition for chalcopyrite‐based solar cells. Zn(O,S) buffer layers were prepared by atomic layer deposition on sequentially grown Cu(In,Ga)(Se,S)2 absorbers from Bosch Solar CISTech GmbH. An externally certified efficiency of 16.1% together with an open circuit voltage of 612 mV were achieved on laboratory scale devices. Stability tests show that the behavior of the ALD‐Zn(O,S)‐buffered devices can be characterized as stable only showing a minor drift of the open circuit voltage and the fill factor. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
This paper reports a comparative study of Cu(In,Ga)(S,Se)2 (CIGSSe) thin‐film solar cells with CBD‐CdS, CBD‐ZnS(O,OH) and ALD‐Zn(O,S) buffer layers. Each buffer layer was deposited on CIGSSe absorber layers which were prepared by sulfurization after selenization (SAS) process by Solar Frontier K. K. Cell efficiencies of CBD‐CdS/CIGSSe, CBD‐ZnS(O,OH)/CIGSSe and ALD‐Zn(O,S)/CIGSSe solar cells exceeded 18%, for a cell area of 0.5 cm2. The solar cells underwent a heat‐light soaking (HLS) post‐treatment at 170 °C under one‐sun illumination in the air; among the three condtions, the ALD‐Zn(O,S)/CIGSSe solar cells showed the highest cell efficiency of 19.78% with the highest open‐circuit voltage of 0.718 V. Admittance spectroscopy measurements showed a shift of the N1 defect's energy position toward shallower energy positions for ALD‐Zn(O,S)/CIGSSe solar cells after HLS post‐treatment, which is in good agreement with their higher open‐circuit voltage and smaller interface recombination than that of CBD‐ZnS(O,OH)/CIGSSe solar cells. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
ZnSe prepared by metal organic chemical vapor deposition is used as a buffer layer in Cu(In,Ga)(S,Se)2 solar cells without any utilization of wet chemistry. Cell efficiencies are as good as cells with the conventional CdS buffer. Stability of unencapsulated cells under damp heat conditions is somewhat lower for the alternative buffer. The first stages of photoassisted growth are studied. X‐ray photoemission spectroscopy shows that a continuous layer is formed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
(Cd,Zn)S buffer layer and Zn1−x Mgx O window layer were investigated to replace the traditional CdS buffer layer and ZnO window layer in Cu(In,Ga)(Se,S)2 (CIGSSe)‐based solar cell. (Cd,Zn)S with band‐gap energy (E g) of approximately 2.6 eV was prepared by chemical bath deposition, and Zn1−x Mgx O films with different [Mg]/([Mg] + [Zn]) ratios, x , were deposited by radio frequency magnetron co‐sputtering of ZnO and MgO. The estimated optical E g of Zn1−x Mgx O films is linearly enhanced from 3.3 eV for pure ZnO (x  = 0) to 4.1 eV for Zn0.6Mg0.4O (x  = 0.4). The quality of the Zn1−x Mgx O films, implied by Urbach energy, is severely deteriorated when x is above 0.211. Moreover, the temperature‐dependent current density‐voltage characteristics of the CIGSSe solar cells were conducted for the investigation of the heterointerface recombination mechanism. The external quantum efficiency of the CIGSSe solar cell with the (Cd,Zn)S buffer layer/Zn1−x Mgx O window layer is improved in the wavelength range of 320–520 nm. Therefore, a gain in short‐circuit current density up to about 5.7% was obtained, which is higher conversion efficiency of up to around 5.4% relative as compared with the solar cell with the traditional CdS buffer layer/ZnO window layer. The peak efficiency of 19.6% was demonstrated in CIGSSe solar cell with (Cd,Zn)S buffer layer and Zn1−x Mgx O window layer, where x is optimized at 0.211. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
The electronic band alignment of the Zn(O,S)/Cu(In,Ga)Se2 interface in high‐efficiency thin‐film solar cells was derived using X‐ray photoelectron spectroscopy, ultra‐violet photoelectron spectroscopy, and inverse photoemission spectroscopy. Similar to the CdS/Cu(In,Ga)Se2 system, we find an essentially flat (small‐spike) conduction band alignment (here: a conduction band offset of (0.09 ± 0.20) eV), allowing for largely unimpeded electron transfer and forming a likely basis for the success of high‐efficiency Zn(O,S)‐based chalcopyrite devices. Furthermore, we find evidence for multiple bonding environments of Zn and O in the Zn(O,S) film, including ZnO, ZnS, Zn(OH)2, and possibly ZnSe. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Antimony selenosulfide (Sb2(S,Se)3) is considered as a promising light-harvesting material and has been widely used in solar cells. For high-efficiency Sb2(S,Se)3 solar cells, the most commonly used electron-transporting layer of cadmium sulfide (CdS) is generally prepared by chemical bath deposition (CBD) approach. However, the hazardous waste liquid from the chemical bath and the sensitivity of the deposition process to the environment are challenges to practical applications. Herein, a molecular beam epitaxy deposition is reported to prepare CdS films, overcoming the drawbacks of CBD process. Furthermore, through introducing oxygen during the deposition of CdS, the sulfur vacancy defects generated in the vacuum deposition process are suppressed. The performance of Sb2(S,Se)3 solar cells is accordingly improved significantly. This improvement is attributed to the following aspects: i) the improved optical transmittance of CdS films. ii) The enhanced [hk1] orientation of Sb2(S,Se)3 absorber layer. iii) The improved heterojunction quality and suppressed carrier recombination. As a result, a power conversion efficiency of 8.59% for Sb2(S,Se)3 solar cells is achieved. This study provides a novel strategy for preparing electron-transporting layers for efficient chalcogenide thin-film solar cells and sheds new light on large-area solar cell applications.  相似文献   

14.
The influence of the growth conditions on the surface chemistry and on the homogeneity of the chemical composition of CuInS2 (CIS) thin films, prepared by sequential evaporation of metallic precursors in presence of elemental sulfur in a two-stage process, was studied by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). It was found that the growth temperature affects the phase in which this compound grows. The samples deposited at temperatures around 500 °C (2nd stage) contain mainly the CuInS2 phase; however, secondary phases like In2S3, Cu2S were additionally identified at the surface and in the bulk of CuInS2 samples deposited at temperatures greater than 550 °C. Also, the elemental composition of the layers constituting the Glass/Mo/CuInS2/buffer/ZnO structure was studied through Auger electron spectroscopy (AES) depth profile measurements. AES measurements carried out across the Glass/Mo/CuInS2/buffer/ZnO heterojunction gave evidence of Cu diffusion from the CuInS2 layer towards the rest of the layers constituting the device, and of the formation of a MoS2 layer in the Mo/CuInS2 interface. The performance of CuInS2-based solar cells fabricated using CBD (chemical bath deposition) deposited ZnS as buffer layer was compared to that of cells fabricated using CBD deposited In2S3 as buffer.  相似文献   

15.
The purpose of the present paper is to focus on the impact of oxygen gas partial pressure during the sputtering of i‐ZnO and ZnMgO on the transient behavior of Cu(In,Ga)Se2 (CIGSe) based solar cells parameters when a CBD‐Zn(S,O) buffer layer is used. Based on electrical characterization of cells, it is observed that the effect of light soaking is different on J–V characteristics depending on whether oxygen is or is not present during the first deposition time of the i‐ZnO or ZnMgO layers. In fact, when cells are prepared with standard i‐ZnO, the efficiencies are very low and a pronounced transient behavior is observed. However, when the first 10 nm of i‐ZnO or ZnMgO is formed by sputtered layer without adding oxygen during the process, depending on the thickness of the buffer layer, the transient effects strongly decreases. It is then possible to get stable cells reaching efficiencies quite similar to the CdS reference cells, especially with ZnMgO, without any post‐treatments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
In the present communication, the binary CdSe and quaternary Cd1-xZnxSe1-ySy (0 ≤ x = y ≤ 0.35) thin films were synthesized using a chemical bath deposition. Thin film deposition was carried out at the optimized conditions (pH = 10 ± 0.1, deposition temperature = 70 ± 0.1 °C, deposition time = 100 min and substrate rotation speed = 65 ± 2 rpm). X-ray diffraction studies confirmed hexagonal-wurtzite crystal structure with the formation of quaternary Cd(Zn, S)Se phase along with binary CdSe, CdS, ZnS and ZnSe, phases of the as-grown Cd1-xZnxSe1-ySy thin films. Elemental analysis showed presence of Cd2+, Zn2+, S2- and Se2- in the deposited films. Fourier transform infrared spectroscopy shown the bands at 911.15 cm−1 – 901.62 cm−1 which are assigned to the stretching frequency of Cd–Se bond. Scanning electron microscopy show transformation of the microstructure from globular crystallites to a rhomboid flake like network. The electrical conductivity was typically ≈ 10−7 Ω1 cm−1. At low temperatures, the conduction was by variable range hopping, and this changed to thermally activated grain boundary dominated conduction for T > 350 K.  相似文献   

17.
The effect of atomic layer deposition temperature of Zn1‐xMgxO buffer layers for Cu(In,Ga)Se2 (CIGS) based solar cell devices is evaluated. The Zn1‐xMgxO films are grown using diethyl zinc, bis‐cyclopentadienyl magnesium and water as precursors in a temperature range of 105 to 180°C. High efficiency devices are produced in the region from 105 up to 135°C. At a Zn1‐xMgxO deposition temperature of 120°C, a maximum cell efficiency of 15·5% is reached by using a Zn1‐xMgxO layer with an x‐value of 0·2 and a thickness of 140 nm. A significant drop in cell efficiency due to large losses in open circuit voltage and fill factor is observed for devices grown at temperatures above 150°C. No differences in chemical composition, structure and morphology of the samples are observed, except for the samples prepared at 105 and 120°C that show elemental selenium present at the buffer/absorber interface. The selenium at the interface does not lead to major degradation of the solar cell device efficiency. Instead, a decrease in Zn1‐xMgxO resistivity by more than one order of magnitude at growth temperatures above 150°C may explain the degradation in solar cell performance. From energy filtered transmission electron microscopy, the width of the CIGS/Zn1‐xMgxO chemical interface is found to be thinner than 10 nm without any areas of depletion for Cu, Se, Zn and O. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Low cost TiO2/ Sb2(S, Se)3 heterojunction thin film solar cell are prepared successfully by using sol-gel and chemical bath deposition. At first, TiO2 thin film is prepared on the ITO-coated glass substrate by a simple sol-gel and dip-coating method. Subsequently, Sb2(S, Se)3 film is fabricated on TiO2 by selenizing the Sb2S3 film prepared by chemical bath deposition (CBD). The heat-treated process of TiO2 and Sb2(S, Se)3 films has been discussed, respectively. After being heat-treated at 550 °C for TiO2 and 290 °C for Sb2(S, Se)3 films, the photovoltaic devices are completed with the conductive graphite as electrode. The J-V characteristics of TiO2/ Sb2(S, Se)3 solar cell are measured and the open circuit voltage (Voc) of this cell is about 350 mV.  相似文献   

19.
A new atomic layer deposition process was developed for deposition of Zn–Sn–O buffer layers for Cu(In,Ga)Se2 solar cells with tetrakis(dimethylamino) tin, Sn(N(CH3)2)4, diethyl zinc, Zn(C2H5)2, and water, H2O. The new process gives good control of thickness and [Sn]/([Sn] + [Zn]) content of the films. The Zn–Sn–O films are amorphous as found by grazing incidence X‐ray diffraction, have a high resistivity, show a lower density compared with ZnO and SnOx, and have a transmittance loss that is smeared out over a wide wavelength interval. Good solar cell performance was achieved for a [Sn]/([Sn] + [Zn]) content determined to be 0.15–0.21 by Rutherford backscattering. The champion solar cell with a Zn–Sn–O buffer layer had an efficiency of 15.3% (Voc = 653 mV, Jsc(QE) = 31.8 mA/cm2, and FF = 73.8%) compared with 15.1% (Voc = 663 mV, Jsc(QE) = 30.1 mA/cm2, and FF = 75.8%) of the best reference solar cell with a CdS buffer layer. There is a strong light‐soaking effect that saturates after a few minutes for solar cells with Zn–Sn–O buffer layers after storage in the dark. Stability was tested by 1000 h of dry heat storage in darkness at 85 °C, where Zn–Sn–O buffer layers with a thickness of 76 nm retained their initial value after a few minutes of light soaking. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Thin‐film solar cells consisting of earth‐abundant and non‐toxic materials were made from pulsed chemical vapor deposition (pulsed‐CVD) of SnS as the p‐type absorber layer and atomic layer deposition (ALD) of Zn(O,S) as the n‐type buffer layer. The effects of deposition temperature and annealing conditions of the SnS absorber layer were studied for solar cells with a structure of Mo/SnS/Zn(O,S)/ZnO/ITO. Solar cells were further optimized by varying the stoichiometry of Zn(O,S) and the annealing conditions of SnS. Post‐deposition annealing in pure hydrogen sulfide improved crystallinity and increased the carrier mobility by one order of magnitude, and a power conversion efficiency up to 2.9% was achieved. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号