首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with the estimation of a shift parameter δo, based on some nonnegative functional Hg1 of the pair (DδN(x), f?δN(x)), where DδN(x) = KN/b {F2,n(x)—F1,m (x + δ)}, +δN(x) = {mF1,m (x + δ) + nF2,n(x)}/N, where F1,m and F2,n are the empirical distribution functions of two independent random samples (N = m + n), and where K2N = mn/N. First an estimator δN, is defined as a value of δ minimizing a functional H of the type of H1. A second estimator δ1N is also defined which is a linearized version of the first. Finite and asymptotic properties of these estimators are considered. It is also shown that most well-known test statistics of the Kolmogorov-Smirnov type are particular cases of such functionals H1. The asymptotic distribution and the asymptotic efficiency of some estimators are given.  相似文献   

2.
Results of an exhaustive study of the bias of the least square estimator (LSE) of an first order autoregression coefficient α in a contaminated Gaussian model are presented. The model describes the following situation. The process is defined as Xt = α Xt-1 + Yt . Until a specified time T, Yt are iid normal N(0, 1). At the moment T we start our observations and since then the distribution of Yt, tT, is a Tukey mixture T(εσ) = (1 – ε)N(0,1) + εN(0, σ2). Bias of LSE as a function of α and ε, and σ2 is considered. A rather unexpected fact is revealed: given α and ε, the bias does not change montonically with σ (“the magnitude of the contaminant”), and similarly, given α and σ, the bias is not growing with ε (“the amount of contaminants”).  相似文献   

3.
Two classes of estimators of a location parameter ø0 are proposed, based on a nonnegative functional H1* of the pair (D1øN, GøN), where and where FN is the sample distribution function. The estimators of the first class are defined as a value of ø minimizing H1*; the estimators of the second class are linearized versions of those of the first. The asymptotic distribution of the estimators is derived, and it is shown that the Kolmogorov-Smirnov statistic, the signed linear rank statistics, and the Cramérvon Mises statistics are special cases of such functionals H1*;. These estimators are closely related to the estimators of a shift in the two-sample case, proposed and studied by Boulanger in B2 (pp. 271–284).  相似文献   

4.
Consider the model yt = ρnyt ? 1 + ut, t = 1, …, n with ρn = 1 + c/kn and ut = σ1?tI{t ? k0} + σ2?tI{t > k0}, where c is a non-zero constant, σ1 and σ2 are two positive constants, I{ · } denotes the indicator function, kn is a sequence of positive constants increasing to ∞ such that kn = o(n), and {?t, t ? 1} is a sequence of i.i.d. random variables with mean zero and variance one. We derive the limiting distributions of the least squares estimator of ρn and the t-ratio of ρn for the above model in this paper. Some pivotal limit theorems are also obtained. Moreover, Monte Carlo experiments are conducted to examine the estimators under finite sample situations. Our theoretical results are supported by Monte Carlo experiments.  相似文献   

5.
In statistical inference on the drift parameter a in the fractional Brownian motion WHt with the Hurst parameter H ∈ (0, 1) with a constant drift YHt = at + WHt, there is a large number of options how to do it. We may, for example, base this inference on the properties of the standard normal distribution applied to the differences between the observed values of the process at discrete times. Although such methods are very simple, it turns out that more appropriate is to use inverse methods. Such methods can be generalized to non constant drift. For the hypotheses testing about the drift parameter a, it is more proper to standardize the observed process, and to use inverse methods based on the first exit time of the observed process of a pre-specified interval until some given time. These procedures are illustrated, and their times of decision are compared against the direct approach. Other generalizations are possible when the random part is a symmetric stochastic integral of a known, deterministic function with respect to fractional Brownian motion.  相似文献   

6.
Given a Wishart matrix S [SWp(n, Σ)] and an independent multinomial vector X [X ∽ Np (μ, Σ)], equivariant estimators of Σ are proposed. These estimators dominate the best multiple of S and the Stein-type truncated estimators.  相似文献   

7.
Summary Two quadratic formsS H andS E for a testable hypothesis and for an error in the multivariate Zyskind-Martin model with singular covariance matrix are expressed by means of projector operators. Thus the results for the multivariate standard model with identity covariance matrix given by Humak (1977) and Christensen (1987, 1991) are generalized for the case of Zyskind-Martin model. Special cases of our results are formulae forS H andS E in Aitken's (1935) model. In the case of general Gauss-Markoff modelS H andS E can also be expressed by means of projector operators for some subclasses of testable hypotheses. For these hypotheses, testing in Gauss-Markoff model is equivalent to testing in a Zyskind-Martin model.  相似文献   

8.
For X1, …, XN a random sample from a distribution F, let the process SδN(t) be defined as where K2N = σNi=1(ci ? c?)2 and R xi, + Δd, is the rank of Xi + Δdi, among X1 + Δd1, …, XN + ΔdN. The purpose of this note is to prove that, under certain regularity conditions on F and on the constants ci and di, SΔN (t) is asymptotically approximately a linear function of Δ, uniformly in t and in Δ, |Δ| ≤ C. The special case of two samples is considered.  相似文献   

9.
The paper introduces a new difference-based Liu estimator β?Ldiff=([Xtilde]′[Xtilde]+I)?1([Xtilde]′[ytilde]+η β?diff) of the regression parameters β in the semiparametric regression model, y=Xβ+f+?. Difference-based estimator, β?diff=([Xtilde]′[Xtilde])?1[Xtilde]′[ytilde] and difference-based Liu estimator are analysed and compared with respect to mean-squared error (mse) criterion. Finally, the performance of the new estimator is evaluated for a real data set. Monte Carlo simulation is given to show the improvement in the scalar mse of the estimator.  相似文献   

10.
A sequence of independent lifetimes X 1, X 2,…, X m , X m+1,… X n were observed from geometric population with parameter q 1 but later it was found that there was a change in the system at some point of time m and it is reflected in the sequence after X m by change in parameter q 2. The Bayes estimates of m, q 1, q 2, reliability R 1 (t) and R 2 (t) at time t are derived for symmetric and asymmetric loss functions under informative and non informative priors. A simulation study is carried out.  相似文献   

11.
We consider two consistent estimators for the parameters of the linear predictor in the Poisson regression model, where the covariate is measured with errors. The measurement errors are assumed to be normally distributed with known error variance σ u 2 . The SQS estimator, based on a conditional mean-variance model, takes the distribution of the latent covariate into account, and this is here assumed to be a normal distribution. The CS estimator, based on a corrected score function, does not use the distribution of the latent covariate. Nevertheless, for small σ u 2 , both estimators have identical asymptotic covariance matrices up to the order of σ u 2 . We also compare the consistent estimators to the naive estimator, which is based on replacing the latent covariate with its (erroneously) measured counterpart. The naive estimator is biased, but has a smaller covariance matrix than the consistent estimators (at least up to the order of σ u 2 ).  相似文献   

12.
13.
ABSTRACT

Consider the heteroscedastic partially linear errors-in-variables (EV) model yi = xiβ + g(ti) + εi, ξi = xi + μi (1 ? i ? n), where εi = σiei are random errors with mean zero, σ2i = f(ui), (xi, ti, ui) are non random design points, xi are observed with measurement errors μi. When f( · ) is known, we derive the Berry–Esseen type bounds for estimators of β and g( · ) under {ei,?1 ? i ? n} is a sequence of stationary α-mixing random variables, when f( · ) is unknown, the Berry–Esseen type bounds for estimators of β, g( · ), and f( · ) are discussed under independent errors.  相似文献   

14.
Consider k( ? 2) normal populations with unknown means μ1, …, μk, and a common known variance σ2. Let μ[1] ? ??? ? μ[k] denote the ordered μi.The populations associated with the t(1 ? t ? k ? 1) largest means are called the t best populations. Hsu and Panchapakesan (2004) proposed and investigated a procedure RHPfor selecting a non empty subset of the k populations whose size is at most m(1 ? m ? k ? t) so that at least one of the t best populations is included in the selected subset with a minimum guaranteed probability P* whenever μ[k ? t + 1] ? μ[k ? t] ? δ*, where P*?and?δ* are specified in advance of the experiment. This probability requirement is known as the indifference-zone probability requirement. In the present article, we investigate the same procedure RHP for the same goal as before but when k ? t < m ? k ? 1 so that at least one of the t best populations is included in the selected subset with a minimum guaranteed probability P* whatever be the configuration of the unknown μi. The probability requirement in this latter case is termed the subset selection probability requirement. Santner (1976) proposed and investigated a different procedure (RS) based on samples of size n from each of the populations, considering both cases, 1 ? m ? k ? t and k ? t < m ? k. The special case of t = 1 was earlier studied by Gupta and Santner (1973) and Hsu and Panchapakesan (2002) for their respective procedures.  相似文献   

15.
This paper considers the general linear regression model yc = X1β+ut under the heteroscedastic structure E(ut) = 0, E(u2) =σ2- (Xtβ)2, E(ut us) = 0, tæs, t, s= 1, T. It is shown that any estimated GLS estimator for β is asymptotically equivalent to the GLS estimator under some regularity conditions. A three-step GLS estimator, which calls upon the assumption E(ut2) =s?2(X,β)2 for the estimation of the disturbance covariance matrix, is considered.  相似文献   

16.
This paper offers a predictive approach for the selection of a fixed number (= t) of treatments from k treatments with the goal of controlling for predictive losses. For the ith treatment, independent observations X ij (j = 1,2,…,n) can be observed where X ij ’s are normally distributed N(θ i ; σ 2). The ranked values of θ i ’s and X i ’s are θ (1) ≤ … ≤ θ (k) and X [1] ≤ … ≤ X [k] and the selected subset S = {[k], [k? 1], … , [k ? t+1]} will be considered. This paper distinguishes between two types of loss functions. A type I loss function associated with a selected subset S is the loss in utility from the selector’s view point and is a function of θ i with i ? S. A type II loss function associated with S measures the unfairness in the selection from candidates’ viewpoint and is a function of θ i with i ? S. This paper shows that under mild assumptions on the loss functions S is optimal and provides the necessary formulae for choosing n so that the two types of loss can be controlled individually or simultaneously with a high probability. Predictive bounds for the losses are provided, Numerical examples support the usefulness of the predictive approach over the design of experiment approach.  相似文献   

17.
18.
Biased sampling from an underlying distribution with p.d.f. f(t), t>0, implies that observations follow the weighted distribution with p.d.f. f w (t)=w(t)f(t)/E[w(T)] for a known weight function w. In particular, the function w(t)=t α has important applications, including length-biased sampling (α=1) and area-biased sampling (α=2). We first consider here the maximum likelihood estimation of the parameters of a distribution f(t) under biased sampling from a censored population in a proportional hazards frailty model where a baseline distribution (e.g. Weibull) is mixed with a continuous frailty distribution (e.g. Gamma). A right-censored observation contributes a term proportional to w(t)S(t) to the likelihood; this is not the same as S w (t), so the problem of fitting the model does not simply reduce to fitting the weighted distribution. We present results on the distribution of frailty in the weighted distribution and develop an EM algorithm for estimating the parameters of the model in the important Weibull–Gamma case. We also give results for the case where f(t) is a finite mixture distribution. Results are presented for uncensored data and for Type I right censoring. Simulation results are presented, and the methods are illustrated on a set of lifetime data.  相似文献   

19.
In this article, we study large deviations for non random difference ∑n1(t)j = 1X1j ? ∑n2(t)j = 1X2j and random difference ∑N1(t)j = 1X1j ? ∑N2(t)j = 1X2j, where {X1j, j ? 1} is a sequence of widely upper orthant dependent (WUOD) random variables with non identical distributions {F1j(x), j ? 1}, {X2j, j ? 1} is a sequence of independent identically distributed random variables, n1(t) and n2(t) are two positive integer-valued functions, and {Ni(t), t ? 0}2i = 1 with ENi(t) = λi(t) are two counting processes independent of {Xij, j ? 1}2i = 1. Under several assumptions, some results of precise large deviations for non random difference and random difference are derived, and some corresponding results are extended.  相似文献   

20.
The basic model in this paper is an AR(1) model with a structural break in the AR parameter β at an unknown time k0. That is, yt = β1yt ? 1I{t ? k0} + β2yt ? 1I{t > k0} + ?t, t = 1, 2, ???, T, where I{ · } denotes the indicator function. Suppose |β1| < 1, |β2| < 1, and {?t, t ? 1} is a sequence of i.i.d. random variables which are in the domain of attraction of the normal law with zero mean and possibly infinite variance, then the limiting distributions for the least squares estimators of β1 and β2 are studied in the present paper, which extend some results in Chong (2001 Chong, T.L. (2001). Structural change in AR(1) models. Econometric Theory 17:87155.[Crossref], [Web of Science ®] [Google Scholar]).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号