首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Abstract

The paper describes the precipitation behaviour in a thermomechanically processed V bearing microalloyed steel containing small additions of Ti and Nb (0·007–0·008 wt-%) using analytical transmission electron microscopy. An intriguing aspect is the significant precipitation of titanium and niobium at these low concentrations, contributing to strength. A high density of multimicroalloyed precipitates of (V, Nb, Ti)(C, N) are observed instead of simple TiN, TiC, and NbC precipitates. They are characterised as cuboidal (45–70 nm), spherical (20–45 nm), irregular (20–45 nm), and fine (10–20 nm). Estimation of solubility products of carbides and nitrides of V, Nb, and Ti implies that the precipitation of titanium occurs primarily in austenite. Interphase precipitation of niobium occurs during austenite to ferrite transformation, while complete precipitation of vanadium takes place in the austenite–ferrite region close to completion of transformation. Substoichiometric concentrations of Ti and Nb, the presence of nitrogen, and the mutual extensive solubility of microalloying carbonitrides explains the formation of core shell (triplex/duplex) precipitates with highly stable nitrides ((Ti, Nb, V)N) in the core and carbides ((Ti, Nb, V)C) in the shell. The qualitative stochiometric ratios of triplex and duplex carbonitrides were Ti0·53Nb0·35V0·12 and Ti0·6V0·4, Nb0·51V0·49 and Ti0·64Nb0·36. Extensive precipitation of fine carbides on dislocation substructures, and sub-boundaries occurred. They were generally characterised as vanadium carbide precipitates with ordered cubic L12 structure and exhibited a Baker–Nutting orientation relationship with the ferrite matrix. M4C3 types of carbides were also observed similar to the steel, having high concentrations of Ti and Nb.  相似文献   

2.
Abstract

The influence of small additions of titanium on the hot ductility of C–Mn–Nb–Al steels has been examined. Titanium and nitrogen levels varied in the ranges 0·014–0·045 and 0·004–0·011 wt-%, respectively, so that a wide range of Ti/N ratios could be studied. The tensile specimens were cast and cooled at average cooling rates of 25, 100, and 200 K min-1 to test temperatures in the range 1100–800°C and strained to failure at a strain rate of 2 × 10-3 s-1. It was found that ductility in the titanium containing niobium steels improved with a decrease in the cooling rate, an increase in the size of the titanium containing precipitates, and a decrease in the volume fraction of precipitates. Coarser particles could be obtained by increasing the Ti/N ratio above the stoichiometric ratio for TiN and by testing at higher temperatures. However, ductility was generally poor for these titanium containing steels and it was equally poor when niobium was either present or absent. For steels with ~0·005 wt-%N ductility was very poor at the stoichiometric Ti/N ratio of 3·4 : 1. Ductility was better at the higher Ti/N ratios but only two of the titanium containing niobium steels gave better ductility than the titanium free niobium containing steels and then only at temperatures below about 950–900°C. One of these steels had the lowest titanium addition (0·014 wt-%), thus limiting the volume fraction of fine Ti containing particles and the other had the highest Ti/N ratio of 8 : 1. However, even for these two steels ductility was worse than for the titanium free steels in the higher temperature range. The commercial implications of these results are discussed.  相似文献   

3.
Abstract

The effect of Mo additions on the development of bainitic ferrite in hot rolled low carbon (0·05 wt-%C) Nb containing steel strips has been studied. The steel strips were fabricated by a combined process of controlled rolling and accelerated cooling. Microstructural characterisation and mechanical testing for the corresponding strips were investigated. The results indicated that a small amount of Mo addition (0·1–0·3 wt-%) causes the production of a high volume fraction of bainite, which undergoes significant secondary hardening after tempering treatment at 600°C for 1 h. It is noticeable that the secondary hardening effect provides an additional way to significantly increase the strength of low carbon Nb–Mo containing bainitic steels.  相似文献   

4.
Abstract

Increasing Al from 0·05 to 1% in Nb containing transformation induced plasticity steel resulted in deepening and considerable widening of the hot ductility trough. Further increase in the Al level to 1·5% produced a trough similar to the low Al steel but having better ductility in the temperature range of 650–800°C. This improved ductility could be ascribed to its finer austenite grain size. Nb(CN) was able to precipitate readily in these steels and was important in influencing the hot ductility of the 0·05 and 1·5%Al steel in the temperature range of 750–1000°C, with ductility improving as the particle size increased with test temperature. No AlN was found in 0·05%Al containing steel, and there was no significant dendritic precipitation of AlN in 1·5%Al containing steel, although precipitation of AlN in plate form was readily observed. In 1%Al steel, copious dendritic precipitation of AlN was present at the γ grain boundaries, leading to rock candy fracture. The poor ductility shown in 1%Al containing steel is due to a combination of this dendritic precipitation, which took place only in a steel of peritectic carbon composition, and its coarse grain size. Both low and 1·5%Al containing steels had compositions outside the peritectic range. It is strongly advised that for this type of steel, the composition should be designed to fall outside the peritectic carbon range.  相似文献   

5.
采用Gleeble-1500热模拟试验机对Ti+Nb和Ti+V复合处理超低碳BH钢的变形抗力和动态连续冷却转变进行研究,并观察了两种实验钢在不同冷却工艺条件下的金相组织。结果表明:在1100℃、应变速率1s-1时Ti+Nb超低碳BH钢的变形抗力比Ti+V超低碳BH钢高出约13MPa,在相同的变形条件下,两种实验钢的组织形貌及晶粒尺寸差别较大。两种超低碳BH钢在不同冷却条件下的室温金相组织均是多边形的铁素体,Ti+Nb超低碳BH钢铁素体晶粒较为细小,形状不规则,平均晶粒尺寸为16μm,Ti+V超低碳BH钢铁素体晶粒则较为粗大,形状规则,平均晶粒尺寸为26μm。  相似文献   

6.
Abstract

The present study concerns the mechanical properties of low carbon (0·05 wt-%) high Mn bainitic steel. The continuous cooling transformation diagram exhibited bainitic transformation without any prior diffusive transformation of austenite even for a cooling rate as low as 0·5°C/s. The bainitic steels have shown continuous elongation behaviour with attractive combination of strength (>1200 MPa) and elongation (>14%). The bainitic microstructure obtained after annealing treatment has yielded excellent combination of strength, uniform elongation, yield ratio and static toughness value.  相似文献   

7.
The correlations of microstructure, hardness and fracture toughness of high chromium cast iron with the addition of alloys (titanium, vanadium, niobium and molybdenum) were investigated. The results indicated that the as-cast microstructure changed from hypereutectic, eutectic to hypoeutectic with the increase of alloy contents. Mo dissolved in austenite and increased the hardness by solid solution strengthening. TiC and NbC mainly existed in austenite and impeded the austenite dendrite development. V existed in multicomponent systems in forms of V alloy compounds (VCrFe8 and VCr2C2). With the increase of alloy additions, carbides size changed gradually from refinement to coarseness, hardness and impact toughness were increased and then decreased. Compared with the fracture toughness (6 J/cm2) and hardness (50·8HRC) without any alloy addition, the toughness and hardness at 0·60 V–0·60Ti–0·60Nb–0·35Mo (wt%) additions were improved and achieved to 11 J/cm2 and 58·9HRC, respectively. The synergistic roles of Ti, Nb, V and Mo influenced the solidification behaviour of alloy. The refinement of microstructure and improvement of carbides morphologies, size and distribution improved the impact toughness.  相似文献   

8.
In the present study, copper bearing low carbon microalloyed ultrahigh strength steel has been produced on a pilot scale. Transformation of the aforesaid steel during continuous cooling has been evaluated. The steel sample has been thermomechanically processed followed by either air cooling or water quenching. Variation in microstructure and mechanical properties at different finish rolling temperatures has been studied. A mixture of granular bainite, bainitic ferrite and precipitation of nano-sized (Ti, Nb)C particles is the characteristic microstructural feature of air cooled steel. On the other hand, predominantly lath martensitic structure along with the similar type of microalloying precipitates of air cooled steels and Cu precipitates are obtained in case of water quenched steel. The best combination of strength (1364-1403 MPa) and ductility (11-14%) has been achieved for the selected range of finish rolling temperature of water quenched steel.  相似文献   

9.
Abstract

The hot ductility of in situ melted tensile specimens of Ti–Nb containing steels having C contents in the peritectic C range 0·12–0·17% with and without V has been examined over the temperature range 700–1000°C. An improved testing regime for simulating the continuous casting process was used, which takes into account both primary and secondary cooling conditions. For the Nb containing steels, the ductility improved in the temperature range 750–850°C as the Ti/N ratio increased. However, ductility at 800°C was still below the 35–40% reduction in area values required to avoid transverse cracking. This was attributed to the copious precipitation of sub 40 nm NbTi(CN) precipitates along the grain boundaries and finer precipitates within the grains. Adding V to the Ti–Nb containing steels resulted in significantly improved ductility with reduction in area values at 800°C in excess of 45%. This improvement was due to a decrease in the fraction of fine particles, and in accord with this better ductility, transverse cracking of industrial slabs was avoided.  相似文献   

10.
Abstract

A series of highly ductile, high strength steels exhibiting transformation induced plasticity due to retained austenite was developed by varying the carbon content in the range 0·01–0·4 wt-% in 5 wt-%Mn based steel. For up to 0·l%C the mechanical properties are insensitive to cooling rate after intercritical heating, but afurther increase in carbon content causes a large sensitivity to the cooling rate, owing to carbide precipitation occurring during slow cooling. By suppressing this carbide precipitation with water quenching after the intercritical holding, an excellent combination of tensile strength (1580 MN m?2) and uniform elongation (21%) was attained at 0·3%C in this series.

MST/1964  相似文献   

11.
The austenite to ferrite transformation characteristics of a commercial high strength line pipe steel containing 0·05 wt-% carbon and 0·095 wt-% niobium have been rigorously studied by continuous cooling experiments in the range between 960 and 1260°C. A significant delay in the austenite to allotriomorphic ferrite transformation has been demonstrated to occur under practically relevant thermal processing conditions. The effects of prior austenite grain size and soluble niobium have been carefully evaluated and isolated and it has been concluded that the amount of niobium in solution in the austenite is primarily responsible for the retardation. Alternative hypotheses to explain the mechanism whereby niobium exerts this effect on the hardenability of steel are discussed in detail. Soluble niobium reducing the austenite grain boundary energy is argued to be the most convincing explanation of the phenomenon and a reduction of grain boundary energy of 0·286 J m?2 per wt-% of soluble niobium content has been proposed.  相似文献   

12.
Abstract

The effects of temperature on interface microstructure and strength properties of Ti/stainless diffusion bonded joint using Nb interlayer, processed in the temperature range 800–950°C for 1·5 h in vacuum were investigated. The stainless steel/Nb interface is free from intermetallic phase up to 900°C; however, Fe2Nb+Fe7Nb6 phase mixture has been observed at 950°C processing temperature. The Nb/Ti interface is free from intermetallic for all processing temperatures. The maximum tensile strength of ~287 MPa (~90% of Ti) and shear strength ~222 MPa (~75% of Ti) along with 6·9% ductility have been achieved in the diffusion bonded joints, when processed at 900°C. The bonded samples failure takes place through the stainless steel/Nb interface for all processing temperatures during the loading.  相似文献   

13.
A base low Si, high-Al transformation-induced plasticity (TRIP) steel and one with 0.03Nb and 0.02Ti (wt%) additions were subjected to thermo-mechanical processing (TMP) and galvanising simulations. The microstructure and mechanical properties were analysed using a combination of optical and electron microscopy, X-ray diffraction and tensile testing and the results compared with those from intercritically annealed–galvanised steels. The addition of Nb and Ti results in microstructure refinement and an increase in the amount of the retained austenite after TMP which in turn, leads to increases in the tensile strength (~750 MPa) and the total elongation (TE) (~29 %). A deterioration in the volume fraction of retained austenite and the mechanical properties was noted in both steels after the additional galvanising simulation. For the base steel, all TMP and galvanised samples presented with continuous yielding during tensile testing. The Nb–Ti steel exhibited discontinuous yielding and extended Lüders banding when TMP was followed by a longer coiling time. Both steels returned discontinuous yielding after the intercritical annealing–galvanising treatment. The discontinuous yielding behaviour was associated with the much finer ferrite grain size in the intercritically annealed steels and the ageing processes that take place during galvanising.  相似文献   

14.
Abstract

The influence of a low Ti addition (~0·01%) on the hot ductility of Nb containing HSLA steels has been examined. For conventional cooling conditions in which an average cooling rate from the melting point to the test temperature was used, the ductility decreased markedly with the addition of Ti. However, when cooling conditions after melting were more in accord with the thermal heat treatment undergone by the strand during continuous casting, i.e. cooling is fast to begin with, reaches a minimum and then reheats, after which the temperature falls more slowly to the test temperature, the Ti addition was found to be beneficial.  相似文献   

15.
Abstract

Phase transformations and mechanical properties of both Ti–29Nb–13Ta–4·6Zr and Ti–39Nb–13Ta–4·6Zr (wt–%) alloys were investigated. The microstructure of the 29Nb alloy is sensitive to solution and aging treatment. Ice water quenching from the solution treatment temperature resulted in (β+α") microstructure but air or furnace cooling led to a mixture of (β+ω). The formation of the orthorhombic α" martensite thus suppresses ω formation in the ice water quenched 29Nb alloy. Cooling rate from the solution treatment temperature also has a significant effect on the formation of α and ω phases during subsequent isothermal aging below the ω start temperature: slow cooling enhances ω but depresses α formation. This cooling rate dependence of aged microstructure was attributed to α" martensite acting as precursor of the α phase, thus providing a low energy path to the precipitation of a at the expense of ω. Phase transformation in the 39Nb alloy is more sluggish than that in the 29Nb alloy, owing to the presence of the higher content of β stabiliser Nb. For the 29Nb alloy, Young's modulus and mechanical properties are sensitive to the fraction of phases, and change significantly during aging, in contrast with the 39Nb alloy.  相似文献   

16.
文章研究了加Ti、Nb对HN2154非调质钢的组织、力学性能和晶粒大小的影响。研究结果表明,随着Ti、Nb的加入,HN2154钢的强度和硬度出现较明显下降,塑性略有提高,加Ti和加Nb对HN2154钢热轧状态下钢材的晶粒大小没有明显影响;但加Ti、Nb能细化HN2154钢经常规加热正火后的晶粒。加Ti和Nb对感应加热锻造后锻件的晶粒大小影响很小。根据研究结果,确定了HN2154钢中Ti、Nb的控制。  相似文献   

17.
A new low carbon titanium and niobium microalloyed steel has been thermomechanically processed in a pilot plant unit. Phase transformation phenomenon of the above steel during continuous cooling has been assessed. Evolution of microstructure and mechanical properties has also been studied at different finish rolling temperatures. A mixture of intragranular ferrite with granular bainite and bainitic ferrite along with inter-lath and intra-lath precipitation of (Ti, Nb)CN particles are the characteristic microstructural feature of air cooled steel. However, mixture of lower bainite and lath martensitic structure along with similar type (Ti, Nb)CN precipitate is observed in water quenched steel. High yield strength (896–948 MPa) with high tensile strength (974–1013 MPa) has been achieved with moderate ductility (16–17%) for the selected range of finish rolling temperature for air cooled steel. However, the water quenched steel yields higher yield strength (1240–1260 MPa) as well as higher tensile strength (1270–1285 MPa) but with lower ductility (13–14%) for the selected range of finish rolling temperature. Fairly good impact toughness values in the range of 50–89 J are obtained for the air cooled steel which are marginally higher than those of water quenched steel (42–81 J).  相似文献   

18.
The titanium–steel clad plates were prepared by vacuum roll cladding. Ti–Fe compounds and TiC were observed at different cooling rates after rolling. Optical microscopy, electron microprobe analyser, X-ray diffraction and shear test studies were carried out to study the effect of Ti–Fe compounds and TiC on the ultimate microstructure and mechanical properties of titanium–steel clad plates. At a cooling rate of 6.2°C/min, TiC and Ti–Fe compounds seriously impacted the mechanical properties of the clad plate. At a cooling rate of 1.8°C/min, the thickness of the TiC layer was optimal much that the maximum shear strength of 296?MPa was obtained. At a cooling rate of 0.6°C/min, the thickness of the TiC layer was relatively thick, which affected the mechanical properties of clad plates.  相似文献   

19.
Abstract

A maraging steel with a composition of Fe–12·94Ni–1·61Al–1·01Mo–0·23Nb (wt-%) was investigated. Optical, scanning electron and transmission electron microscopy and X-ray diffraction analysis were employed to study the microstructure of the steel after different aging periods at temperatures of 450–600°C. Hardness and Charpy impact toughness of the steel were measured. The study of microstructure and mechanical properties showed that nanosized precipitates were formed homogeneously during the aging process, which resulted in high hardness. As the aging time is prolonged, precipitates grow and hardness increases. Fractography of the as forged steel has shown mixed ductile and brittle fracture and has indicated that the steel has good toughness. Relationships among heat treatment, microstructure and mechanical properties are discussed. Further experiments using tensile testing and impact testing for aged steel were carried out.  相似文献   

20.
Abstract

A study simulating thin slab continuous casting followed by direct charging into an equalisation furnace has been undertaken based on six low carbon (0·06 wt-%) vanadium microalloyed steels. Mechanical and impact test data showed that properties were similar or better than those obtained from similar microalloyed conventional thick cast as rolled slabs. The dispersion plus dislocation strengthening was estimated to be in the range 80–250 MPa. A detailed TEM/EELS analysis of the dispersion sized sub 15 nm particles showed that in all the steels, they were essentially nitrides with little crystalline carbon detected. In the steels V–Nb, V–Ti and V–Nb–Ti, mixed transition metal nitrides were present. Modelling of equilibrium precipitates in these steels, based on a modified version of ChemSage, predicted that only vanadium rich nitrides would precipitate in austenite but that the C/N ratio would increase through the two phase field and in ferrite. The experimental analytical data clearly point to the thin slab direct charging process, which has substantially higher cooling rates than conventional casting, nucleating non-equilibrium particles in ferrite which are close to stoichiometric nitrides. These did not coarsen during the final stages of processing, but retained their highly stable average size of, ~7 nm resulting in substantial dispersion strengthening. The results are considered in conjunction with pertinent published literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号