首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Record Low Sea-Ice Concentration in the Central Arctic during Summer 2010   总被引:3,自引:0,他引:3  
The Arctic sea-ice extent has shown a declining trend over the past 30 years. Ice coverage reached historic minima in 2007 and again in 2012. This trend has recently been assessed to be unique over at least the last 1450 years. In the summer of 2010, a very low sea-ice concentration(SIC) appeared at high Arctic latitudes—even lower than that of surrounding pack ice at lower latitudes. This striking low ice concentration—referred to here as a record low ice concentration in the central Arctic(CARLIC)—is unique in our analysis period of 2003–15, and has not been previously reported in the literature. The CARLIC was not the result of ice melt, because sea ice was still quite thick based on in-situ ice thickness measurements.Instead, divergent ice drift appears to have been responsible for the CARLIC. A high correlation between SIC and wind stress curl suggests that the sea ice drift during the summer of 2010 responded strongly to the regional wind forcing. The drift trajectories of ice buoys exhibited a transpolar drift in the Atlantic sector and an eastward drift in the Pacific sector,which appeared to benefit the CARLIC in 2010. Under these conditions, more solar energy can penetrate into the open water,increasing melt through increased heat flux to the ocean. We speculate that this divergence of sea ice could occur more often in the coming decades, and impact on hemispheric SIC and feed back to the climate.  相似文献   

2.
利用MPI-ESM-LR模式RCP8.5情景下海冰浓度、降水、海表面温度、500 hPa位势高度和850 hPa风场等数据,对比分析了一次北极海冰突变前后春季海冰与东亚夏季降水关系的差异,并探究其可能成因。结果表明:1)北极海冰突变导致北极海冰浓度(Sea Ice Concentration,SIC)和ENSO对东亚夏季降水的影响均发生变化。突变前SIC和ENSO共同影响降水年际变化;突变后ENSO主导降水EOF的第一模态,SIC主导降水EOF的第二模态;2)北极海冰突变前,ENSO和SIC通过500 hPa经向波列,影响整个东亚地区的850 hPa风场,最终导致三极子型降水模态。突变后,ENSO通过500 hPa经向波列,影响华南地区的850 hPa风场,导致降水的偶极子空间模态,从而主导降水EOF的第一模态;同时SIC通过东亚地区500 hPa纬向波列,影响北方850 hPa风场,最终主导降水EOF的第二模态。3)北极海冰突变后,ENSO和SIC对东亚夏季降水的影响存在区域差异。北极海冰突变前,ENSO和SIC共同影响南北方降水;北极海冰突变后,SIC主要影响北方降水,ENSO主要影响南方降水。  相似文献   

3.
北极海冰的厚度和面积变化对大气环流影响的数值模拟   总被引:13,自引:2,他引:13  
文中利用中国科学院大气物理研究所设计的两层大气环流模式 ,模拟研究了北极海冰厚度和面积变化对大气环流的影响 ,尤其是对东亚区域气候变化的影响。模式中海冰厚度处理趋于合理分布 ,导致东亚冬、夏季风偏强 ,使冬季西伯利亚高压和冰岛低压的模拟结果更趋合理 ;另一方面 ,海冰厚度变化可以激发出跨越欧亚大陆的行星波传播 ,在低纬度地区 ,该行星波由西太平洋向东太平洋地区传播 ;海冰厚度变化对低纬度地区的对流活动也有影响。冬季北极巴伦支海海冰变化对后期大气环流也有显著的影响。数值模拟结果表明 :冬季巴伦支海海冰偏多 (少 )时 ,春季 (4~ 6月 )北太平洋中部海平面气压升高 (降低 ) ,阿留申低压减弱 (加深 ) ,有利于春季白令海海冰偏少 (多 ) ;而夏季 ,亚洲大陆热低压加深 (减弱 ) ,5 0 0 h Pa西太平洋副热带高压位置偏北 (南 )、强度偏强 (弱 ) ,东亚夏季风易偏强 (弱 )。  相似文献   

4.
基于一个全球气-海-冰耦合模式数值模拟结果,对北半球高纬度地区年际尺度的气-海-冰相互作用进行了分析。在所使用的全球气-海-冰耦合模式中,大气环流模式和陆面过程模式来自国家气候中心,海洋环流模式和海冰模式来自中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室。采用一种逐日通量距平耦合方案实现次网格尺度海冰非均匀条件下大气环流模式和海洋环流模式在高纬地区的耦合。只对50 a模拟结果中的后30 a结果进行了分析。在分析中,首先对滤波后的北半球高纬度地区海平面气压、表面大气温度、海表面温度、海冰密集度及海表面感热通量的标准化距平做联合复经验正交函数分解,取第一模进行重建,然后讨论了在一个循环周期(约4 a)中北半球高纬度地区气-海-冰的作用关系。结果表明:(1)当北大西洋涛动处于正位相时,格陵兰海出现南风异常,使表面大气温度升高,海洋失去感热通量减少,海洋表面温度升高,海冰密集度减小;当北大西洋涛动处于负位相时,格陵兰海出现北风异常,使表面大气温度降低,海洋失去感热通量增多,海洋表面温度降低,海冰密集度增加。巴伦支海变化特点与格陵兰海相似,但在时间上并不完全一致。(2)多年平均而言,北冰洋内部靠近极点区域为冷中心。当北冰洋内部为低压异常时,因异常中心偏向太平洋一侧,使北冰洋内部靠近太平洋部分为暖平流异常,靠近大西洋一侧为冷平流异常。伴随着暖、冷平流异常,这两侧分别出现暖异常和冷异常,海表面给大气的感热通量分别偏少和偏多,上述海区海表面温度分别偏高和偏低,海冰密集度分别偏小和偏大。当北冰洋内部为高压异常时特点正好与上述相反。由上述分析结果可知,在海洋、大气年际循环中,大尺度大气环流变率起主导作用,海洋表面温度和海冰密集度变化主要是对大气环流变化的响应。  相似文献   

5.
The data-collection campaign for the 2008 International Polar Year–Circumpolar Flaw Lead System Study saw the Canadian Coast Guard Ship (CCGS) Amundsen, a research icebreaker, overwinter in high-concentration unconsolidated sea ice in Amundsen Gulf. Environmental monitoring continued into the open-water season. During this period, the Amundsen registered five relatively deep mean sea-level pressure minima (less than 100?kPa). Three were selected for further analysis based on season and the nature of the underlying ocean or sea-ice surface: (1) a winter pressure minimum over unconsolidated sea ice, (2) a spring pressure minimum which likely contributed to the break-up of the sea-ice cover on Amundsen Gulf, and (3) a summer pressure minimum over open water. The characteristics of these pressure minima and the impact of their passage on the atmospheric boundary layer and on the sea-ice cover as they crossed Amundsen Gulf were examined. Several features were revealed by the analysis. (1) The winter and summer pressure minima were migratory cyclones accompanied by Arctic frontal waves with characteristics very similar to the polar frontal waves associated with the migratory cyclones found at more southerly latitudes, whereas the spring pressure minimum was attributed to an Arctic frontal trough of low pressure with the cyclonic centre remaining south of the Gulf. (2) The passage of the frontal-wave cyclone in winter and the frontal trough of low pressure in spring disrupted the equilibrium that had been established during more settled periods between the atmospheric boundary layer and the mosaic surface (leads, polynyas, and sea ice); however, equilibrium was quickly re-established. (3) In summer, the thermal structure of the lower atmospheric boundary layer persisted through the passage of the frontal-wave cyclone over the open-water surface. (4) The passage of the frontal-wave cyclone in winter and the frontal trough of low pressure in spring modified the mesoscale sea-icescape.  相似文献   

6.
In our previous study,a statistical linkage between the spring Arctic sea ice concentration(SIC)and the succeeding Chinese summer rainfall during the period 1968–2005 was identified.This linkage is demonstrated by the leading singular value decomposition(SVD)that accounts for 19%of the co-variance.Both spring SIC and Chinese summer rainfall exhibit a coherent interannual variability and two apparent interdecadal variations that occurred in the late 1970s and the early 1990s.The combined impacts of both spri...  相似文献   

7.
Along with significant changes in the Arctic climate system, the largest year-to-year variation in sea-ice extent (SIE) has occurred in the Laptev, East Siberian, and Chukchi seas (defined here as the area of focus, AOF), among which the two highly contrasting extreme events were observed in the summers of 2007 and 1996 during the period 1979–2012. Although most efforts have been devoted to understanding the 2007 low, a contrasting high September SIE in 1996 might share some related but opposing forcing mechanisms. In this study, we investigate the mechanisms for the formation of these two extremes and quantitatively estimate the cloud-radiation-water vapor feedback to the sea-ice-concentration (SIC) variation utilizing satellite-observed sea-ice products and the NASA MERRA reanalysis. The low SIE in 2007 was associated with a persistent anticyclone over the Beaufort Sea coupled with low pressure over Eurasia, which induced anomalous southerly winds. Ample warm and moist air from the North Pacific was transported to the AOF and resulted in positive anomalies of cloud fraction (CF), precipitable water vapor (PWV), surface LWnet (down-up), total surface energy and temperature. In contrast, the high SIE event in 1996 was associated with a persistent low pressure over the central Arctic coupled with high pressure along the Eastern Arctic coasts, which generated anomalous northerly winds and resulted in negative anomalies of above mentioned atmospheric parameters. In addition to their immediate impacts on sea ice reduction, CF, PWV and radiation can interplay to lead to a positive feedback loop among them, which plays a critical role in reinforcing sea ice to a great low value in 2007. During the summer of 2007, the minimum SIC is 31 % below the climatic mean, while the maximum CF, LWnet and PWV can be up to 15 %, 20 Wm?2, and 4 kg m?3 above. The high anti-correlations (?0.79, ?0.61, ?0.61) between the SIC and CF, PWV, and LWnet indicate that CF, PWV and LW radiation are indeed having significant impacts on the SIC variation. A new record low occurred in the summer of 2012 was mainly triggered by a super storm over the central Arctic Ocean in early August that caused substantial mechanical ice deformation on top of the long-term thinning of an Arctic ice pack that had become more dominated by seasonal ice.  相似文献   

8.
A data-model intercomparison study of Arctic sea-ice variability   总被引:1,自引:0,他引:1  
Armstrong  A.  Tremblay  L.-B.  Mysak  L. 《Climate Dynamics》2003,20(5):465-476
The dynamic-thermodynamic granular rheology sea-ice model of Tremblay and Mysak is validated against 40 years of observed sea-ice concentration (SIC) data. Subsequently, the mechanisms responsible for producing SIC anomalies in the model are evaluated by studying the coupled variance (using the singular value decomposition method, SVD) between the simulated SIC anomalies and the ice speed and air temperature anomalies. To execute this validation, a 49-year (1949-97) simulation (including a 9-year spin-up period) of the Arctic and peripheral sea-ice cover using daily varying winds and monthly mean air temperatures is produced. In general, the simulated SIC variations for 1958-97 in the East Siberian, Chukchi and Beaufort seas are in agreement with observations, while larger discrepancies occur in the Laptev and Kara seas. Moreover, the sensitivity of the model to southerly wind anomalies in creating summer SIC anomalies compares well with the observed sensitivity; however, the model's sensitivity to summer air temperature anomalies is weaker than observed. The summer SIC anomalies over an entire sea are not influenced by variations in the level of river runoff. Results from the SVD analysis show that the main source of variability in the peripheral seas is associated with the variation in the strength of the Arctic High; in the East Siberian and Laptev seas, the strengthening and weakening of the Transpolar Drift Stream also play an important role. Over the entire Arctic domain, surface air temperature anomalies are negatively correlated with sea-ice anomalies. Finally, the observed downward trend in total sea-ice cover in the last two decades as well as record minima in the East Siberian Sea are well reproduced in the simulation.  相似文献   

9.
The Arctic’s rapidly shrinking sea ice cover: a research synthesis   总被引:21,自引:1,他引:20  
The sequence of extreme September sea ice extent minima over the past decade suggests acceleration in the response of the Arctic sea ice cover to external forcing, hastening the ongoing transition towards a seasonally open Arctic Ocean. This reflects several mutually supporting processes. Because of the extensive open water in recent Septembers, ice cover in the following spring is increasingly dominated by thin, first-year ice (ice formed during the previous autumn and winter) that is vulnerable to melting out in summer. Thinner ice in spring in turn fosters a stronger summer ice-albedo feedback through earlier formation of open water areas. A thin ice cover is also more vulnerable to strong summer retreat under anomalous atmospheric forcing. Finally, general warming of the Arctic has reduced the likelihood of cold years that could bring about temporary recovery of the ice cover. Events leading to the September ice extent minima of recent years exemplify these processes.  相似文献   

10.
The interannual atmosphere-ocean-sea ice interaction (AOSI) in high northern latitudes is studied with a global atmosphere-ocean-sea ice coupled model system, in which the model components of atmosphere and land surface are from China National Climate Center and that of ocean and sea ice are from LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences. A daily flux anomaly correction scheme is employed to couple the atmosphere model and the ocean model with the effect of inhomogenity of sea ice in high latitudes is considered. The coupled model system has been run for 50 yr and the results of the last 30 years are analyzed. After the sea level pressure (SLP), surface air temperature (SAT), sea surface temperature (SST), sea ice concentration (SIC), and sea surface sensible heat flux (SHF) are filtered with a digital filter firstly, their normalized anomalies are used to perform the decomposition of combined complex empirical orthogonal function (CCEOF) and then they are reconstructed with the leading mode. The atmosphere-ocean-sea ice interactions in high northern latitudes during a periodical cycle (approximately 4 yr) are analyzed. It is shown that: (1) When the North Atlantic Oscillation (NAO) is in its positive phase, the southerly anomaly appears in the Greenland Sea, SAT increases, the sea loses less SHF, SST increases and SIC decreases accordingly; when the NAO is in its negative phase, the northerly anomaly appears in the Greenland Sea, SAT decreases, the sea loses more SHF, SST decreases and SIC increases accordingly. There are similar features in the Barents Sea, but the phase of evolution in the Barents Sea is different from that in the Greenland Sea. (2) For an average of multi-years, there is a cold center in the inner part of the Arctic Ocean near the North Pole. When there is an anomaly of low pressure, which is closer to the Pacific Ocean, in the inner part of the Arctic Ocean, anomalies of warm advection appear in the region near the Pacif  相似文献   

11.
春季北极涛动对盛夏长江流域地表气温的影响   总被引:2,自引:0,他引:2  
张乐英  徐海明  施宁 《大气科学》2015,39(5):1049-1058
本文基于1958至2002年的ERA-40 月平均再分析资料,利用年际增量方法分析了春季北极涛动(Arctic Oscillation,简称AO)与我国夏季长江流域地表气温的关系。结果表明,在扣除前期冬季ENSO影响后,5月AO指数与8月长江流域地表气温存在显著正相关。通过回归分析发现,5月AO可通过影响中低纬度的海气相互作用进而影响8月长江流域地表气温。当5月AO处于正位相时,在(10°~15°N)及赤道附近产生异常下沉气流,对应着西太平洋局地Hadley环流减弱,对流层底层出现了异常的反气旋性辐散气流。与之对应,赤道西太平洋地区出现了显著的东风异常。由于该东风异常位于5月气候平均的局地海表面温度(SST)极大值中心位置上,该东风异常可通过平流作用使得高海温不断地向西堆积,最终造成赤道西太平洋SST出现显著正异常。当该SST正异常持续至8月时,它通过Gill响应(Gill,1980)在其西北侧激发出气旋性异常环流,它有利于西太平洋副热带高压在我国长江流域的维持,进而造成长江流域地表气温正异常。反之,则相反。  相似文献   

12.
This study examines pre-industrial control simulations from CMIP5 climate models in an effort to better understand the complex relationships between Arctic sea ice and the stratosphere, and between Arctic sea ice and cold winter temperatures over Eurasia. We present normalized regressions of Arctic sea-ice area against several atmospheric variables at extended lead and lag times. Statistically significant regressions are found at leads and lags, suggesting both atmospheric precursors of, and responses to, low sea ice; but generally, the regressions are stronger when the atmosphere leads sea ice, including a weaker polar stratospheric vortex indicated by positive polar cap height anomalies. Significant positive midlatitude eddy heat flux anomalies are also found to precede low sea ice. We argue that low sea ice and raised polar cap height are both a response to this enhanced midlatitude eddy heat flux. The so-called "warm Arctic, cold continents" anomaly pattern is present one to two months before low sea ice, but is absent in the months following low sea ice, suggesting that the Eurasian cooling and low sea ice are driven by similar processes. Lastly, our results suggest a dependence on the geographic region of low sea ice, with low Barents–Kara Sea ice correlated with a weakened polar stratospheric vortex, whilst low Sea of Okhotsk ice is correlated with a strengthened polar vortex. Overall, the results support a notion that the sea ice, polar stratospheric vortex and Eurasian surface temperatures collectively respond to large-scale changes in tropospheric circulation.  相似文献   

13.
武炳义 《大气科学》2005,29(5):747-760
利用国际北极浮冰运动观测资料(IABP)(1979-1998)以及NCEP/NCAR月平均海平面气压再分析资料(1960-2002),通过求解海冰运动异常的复斜方差矩阵,研究了冬季北极海冰运动主模态构成及其与海平面气压变化的关系。冬季海冰运动主模态是由两个海冰运动优势模态的一个线性组合构成,与这两个运动优势模态有直接关系的海平面气压变化主要发生在北极海盆及其边缘海区。尽管北极涛动(北大西洋涛动)通过影响海平面气压进而影响北极海冰运动,但是,北极涛动(北大西洋涛动)并不是决定海冰运动主模态的关键性因素。  相似文献   

14.
Atmospheric forcing of Fram Strait sea ice export: a closer look   总被引:2,自引:0,他引:2  
Fram Strait is the primary region of sea ice export from the Arctic and therefore plays an important role in regulating the amount of sea ice and freshwater within the Arctic. We investigate the variability of Fram Strait sea ice motion and the role of atmospheric circulation forcing using daily data during the period 1979–2006. The most prominent atmospheric driver of anomalous sea ice motion across Fram Strait is an east–west dipole pattern of Sea Level Pressure (SLP) anomalies with centers of action located over the Barents Sea and Greenland. This pattern, also observed in synoptic studies, is associated with anomalous meridional winds across Fram Strait and is thus physically consistent with forcing changes in sea ice motion. The association between the SLP dipole pattern and Fram Strait ice motion is maximized at 0-lag, persists year-round, and is strongest on time scales of 10–60 days. The SLP dipole pattern is the second empirical orthogonal function (EOF) of daily SLP anomalies in both winter and summer. When the analysis is repeated with monthly data, only the Barents center of the SLP dipole remains significantly correlated with Fram Strait sea ice motion. However, after removing the leading EOF of monthly SLP variability (e.g., the North Atlantic Oscillation), the full east–west dipole pattern is recovered. No significant SLP forcing of Fram Strait ice motion is found in summer using monthly data, even when the leading EOF is removed. Our results highlight the importance of high frequency atmospheric variability in forcing Fram Strait sea ice motion.  相似文献   

15.
南、北极海冰的时空演变特征   总被引:7,自引:4,他引:3  
利用海水面积指数,分析了南、北极海冰年际时间尺度的时空演变特征。结果表明:南极海冰具有明显的年际振荡。南极夏季海水年际异常具有一定的整体性,秋、冬、春季海冰年际异常则表现出较强的区域性。北极海冰也具有显著的年际振荡。北极冬、春季海冰年际异常主要发生在格陵兰海、巴伦支海和喀拉海,夏、秋季海冰年际异常主要发生在东西伯利亚和海和波旨特海。  相似文献   

16.
By using a 2-layer AGCM designed by Institute of Atmospheric Physics,Chinese Academy of Sciences.this paper investigates influences of thickness and extent variations in Arctic sea ice on the atmosphere circulation,particularly on climate variations in East Asia.The simulation results have indicated that sea ice thickness variation in the Arctic exhibits significant influences on simulation results,particularly on East Asian monsoon.A nearly reasonable distribution of sea ice thickness in the model leads directly to stronger winter and summer monsoon over East Asia.and improves the model's simulation results for Siberia high and Icelandic low in winter.On the other hand,sea ice thickness variation can excite a teleconnection wave train across Asian Continent,and in low latitudes,the wave propagates from the western Pacific across the equator to the eastern Pacific.In addition,the variation of sea ice thickness also influences summer convective activitiesover the low latitudes including South China Sea and around the Philippines.Effects of winter sea ice extents in the Barents Sea on atmospheric circulation in the following spring and summer are also significant.The simulation result shows that when winter sea ice extent in the target region is larger (smaller) than normal.(1)in the following spring (averaged from April to June).positive (negative) SLP anomalies occupy the northern central Pacific.which leads directly to weakened (deepened)Aleutian low.and further favors the light (heavy) sea ice condition in the Bering Sea:(2)in the following summer,thermal depression in Asian Continent is deepened (weakened).and the subtropical high in the northwestern Pacific shifts northward(southward) from its normal position and to be strengthened (weakened).  相似文献   

17.
By using a 2-layer AGCM designed by Institute of Atmospheric Physics,Chinese Academy ofSciences.this paper investigates influences of thickness and extent variations in Arctic sea ice onthe atmosphere circulation,particularly on climate variations in East Asia.The simulation resuhshave indicated that sea ice thickness variation in the Arctic exhibits significant influences onsimulation results,particularly on East Asian monsoon.A nearly reasonable distribution of sea icethickness in the model leads directly to stronger winter and summer monsoon over East Asia.andimproves the model's simulation results for Siberia high and Icelandic low in winter.On the otherhand,sea ice thickness variation can excite a teleconnection wave train across Asian Continent,andin low latitudes,the wave propagates from the western Pacific across the equator to the easternPacific.In addition,the variation of sea ice thickness also influences summer convective activitiesover the low latitudes including South China Sea and around the Philippines.Effects of winter sea ice extents in the Barents Sea on atmospheric circulation in the followingspring and summer are also significant.The simulation result shows that when winter sea iceextent in the target region is larger (smaller) than normal.(1)in the following spring (averagedfrom April to June).positive (negative) SLP anomalies occupy the northern central Pacific.whichleads directly to weakened (deepened)Aleutian low.and further favors the light (heavy) sea icecondition in the Bering Sea:(2)in the following summer,thermal depression in Asian Continent isdeepened (weakened).and the subtropical high in the northwestern Pacific shifts northward(southward) from its normal position and to be strengthened (weakened).  相似文献   

18.
南、北极海冰的长期变化趋势及其与大气环流的联系   总被引:7,自引:5,他引:7  
采用南、北极海冰面积指数 1°× 1°经纬度格点资料及海平面气压资料 ,运用多种统计方法 ,研究了南、北极海冰的长期变化趋势、突变特征及其与大气环流的联系 ,发现近年来南极冬、春、秋季海冰逐渐减少 ,夏季海冰逐渐增加 ;北极春、夏、秋季海冰均不同程度地减少 ,冬季海冰变化趋势不明显 ;南、北极各季海冰的年际变化均存在一定的突发性 ,大气环流在海冰突变年前后有显著的差异  相似文献   

19.
北半球环状模波流相互作用动力学研究进展   总被引:1,自引:0,他引:1  
梁苏洁  赵南 《气象科技》2011,39(6):753-760
总结了国内外学者对于北半球环状模(NAM:Northern Hemisphere Annular Mode)及其活动中心形成原因的研究成果。主要从NAM的天气、气候影响,波流相互作用原理对NAM形成的解释,NAM在北太平洋、北大西洋和北极3个区域活动中心的天气尺度波和行星尺度波活动等方面论述。NAM在对流层的变化与天气尺度波有关,北太平洋和北大西洋两个活动中心是天气尺度波活跃的区域,其峰值区表现为风暴轴,其中北大西洋天气尺度波破碎过程会使得NAM指数急剧变化。NAM在平流层的变化和准定常行星波关系密切,冬季准定常行星波会上传并与高纬平流层纬向流发生相互作用,从而引起北极极涡发生改变。准定常行星波将NAM 3个活动中心有机联系起来:对流层准定常行星波的纬向传播会影响北太平洋风暴轴的位置,而风暴轴的变化会影响下游北大西洋波破碎过程,同时准定常行星波的上传可以影响极涡活动。  相似文献   

20.
The time variation of the sea-ice concentration and multiyear ice fraction within the pack ice in the Arctic Basin is examined, using microwave images of sea ice recently acquired by the Nimbus-5 spacecraft and the NASA CV-990 airborne laboratory. The images used for these studies were constructed from data acquired from the Electrically Scanned Microwave Radiometer (ESMR) which records radiation from earth and its atmosphere at a wavelength of 1.55 cm. Data are analyzed for four seasons during 1973–1975 to illustrate some basic differences in the properties of the sea ice during those times. Spacecraft data are compared with corresponding NASA CV-990 airborne laboratory data obtained over wide areas in the Arctic Basin during the Main Arctic Ice Dynamics Joint Experiment (1975) to illustrate the applicability of passive-microwave remote sensing for monitoring the time dependence of sea-ice concentration (divergence). These observations indicate significant variations in the sea-ice concentration in the spring, late fall and early winter. In addition, deep in the interior of the Arctic polar sea-ice pack, heretofore unobserved large areas, several hundred kilometers in extent, of sea-ice concentrations as low as 50% are indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号