首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
采用CFD软件Star CCM+对中国实验快堆(CEFR)堆芯出口区域的温度脉动现象进行了数值分析。计算中建立了1/4堆芯出口区域模型,采用额定工况下的堆芯出口温度、流量等边界条件,利用LES方法对该问题进行了计算,经分析得出:CEFR功率运行时堆芯出口区域下部的温度脉动主要集中在边缘组件(钢组件、调节棒组件)上方区,出口区域上部的温度脉动在各组件上方区均很显著。最大脉动振幅为19 K,显著脉动频率在5 Hz以下,属于典型的低频脉动。所得结论对下一步实验工作具有积极的指导意义。  相似文献   

2.
快堆燃料组件热工流体力学计算研究   总被引:4,自引:4,他引:0  
对于钠冷快堆,在燃料和包壳最高温度等设计限值下,为获得较高的堆芯出口温度,需深入分析燃料组件内的热工流体力学问题,准确预测组件内的冷却剂温度分布。本文在CRT模型和F.C.Engel等人工作的基础上,提出了ICRT压降关系式,用以计算冷却剂在湍流区、过渡流区和层流区的棒束压降;引入CRT模型和WEST对流传热模型,改进了SUPERENERGY子通道分析程序,并将改进程序与原程序计算结果进行了对比,结果表明:最热子通道出口温度略有降低,液膜温压略有增加;并用计算流体力学软件CFX对中国实验快堆单盒燃料组件活性段进行了三维数值模拟,将计算结果用CRT模型、ICRT压降关系式及改进后的SUPERENERGY子通道分析程序进行了验证,相互符合较好。  相似文献   

3.
为验证中国原子能科学研究院自主开发的快堆系统分析程序FASYS,对美国钠冷快堆EBR-Ⅱ的SHRT-45R无保护失流试验进行了计算分析。利用FASYS程序对试验的堆芯和一回路进行建模,以两台一回路主泵的转速、中间热交换器二次侧入口流量和温度作为计算边界条件。通过对比分析计算值与试验值发现,以堆芯功率为输入数据时,泵流量和XX09测量组件冷却剂温度计算值与试验值吻合良好,由于采用点模型模拟堆芯上腔室温度,Z形管道进口温度计算值变化较试验值快。在堆芯功率和温度耦合计算情况下,堆芯功率的计算值与实测功率总体上吻合良好,堆芯相对功率低于10%后计算值略有偏大。FASYS程序对SHRT-45R试验的分析,验证了该程序的堆芯热工水力模型、一回路热工水力模型、点堆模型,特别是反应性反馈模型。  相似文献   

4.
《核动力工程》2015,(1):141-143
选择计算流体动力学(CFD)为模拟手段,建立快堆一回路钠池的三维闭式一体化CFD模型,对一回路中主要部件进行模拟,其中中间热交换器、独立热交换器、堆芯、主泵采用附加源项法进行模拟,得到中国实验快堆(CEFR)额定功率稳态运行时整个流场的三维速度场与温度场。计算值同CEFR设计值进行比较,结果符合预期,证明了模型的合理性。计算结果表明,钠池较明显地分为温度较低的冷钠池和温度较高的热钠池2个部分,热钠池温差较大,冷热流体搅混现象明显;同时冷钠池、热钠池不同高度的平均温度都很接近,说明分隔冷热钠池的热屏蔽效果较好。  相似文献   

5.
板状燃料元件堆芯热工水力特性分析程序开发及验证   总被引:2,自引:0,他引:2  
采用Visual Fortran 6.5程序语言,基于质量、动量和能量守恒方程,以及合理的流动传热和物性关系式,开发了板状燃料元件堆芯热工水力特性分析程序.利用该程序计算了IAEA 10MW MTR 基准题中定义的堆芯反应性引入和堆芯失流事故.结果表明:本文计算所获得的停堆时刻功率、燃料芯块最高温度、包壳外壁面最高温度以及冷却剂出口温度与文献的计算结果吻合良好,验证了本程序模型的正确性.  相似文献   

6.
超临界水堆(SCWR)是第4代核反应堆的优先发展对象之一,它在经济性上的明显优势使其受到广泛关注。本文以混合谱超临界水堆(SCWR-M)为研究对象,建立合理的数学模型,开发了针对超临界水堆系统的瞬态分析程序TACOS。运用TACOS程序对SCWR-M进行了稳态计算和部分失流事故的瞬态分析。稳态计算的结果与设计值符合良好。部分失流事故的分析结果表明,事故中包壳表面最高温度为702.6 ℃,与安全限值相比有很大裕度。部分失流事故过程中不需采取特殊的安全措施,堆芯可自行回到安全状态。  相似文献   

7.
在压水堆事故分析中,通常采用系统分析程序、热流密度计算程序和子通道分析程序分步计算堆芯偏离泡核沸腾比(Departure from Nucleate Boiling Ratio,DNBR)。利用该方法计算的堆芯DNBR结果准确性较好,但是计算过程繁琐、费时。对于系统分析程序自带的堆芯DNBR简化计算模型,由于其根据堆芯限制线偏微分近似得到,适用范围较窄,准确性也难以保证。利用神经网络中的误差反向传播(Back Propagation,BP)算法,基于堆芯核功率、入口温度、流量和压力4个变量对应的一系列DNBR值,选取部分数据进行训练并建立模型,以达到快速和准确地预测堆芯DNBR的目的。根据误差分析,建立的计算模型具有较好的准确性,而且在部分失流事故和汽机停机事故下可较好地预测堆芯DNBR。  相似文献   

8.
堆芯出口温度测量对于掌握反应堆运行状态有着重要的意义,本文通过计算流体动力学(CFD)方法对堆芯出口温度测量的表征性进行分析。通过对燃料组件及仪表管结构进行模拟计算,获得了仪表管内冷却剂流场和温度分布;通过对9种典型功率分布下堆芯出口温度测量结果的定量分析,获得了堆芯出口温度表征性与燃料组件功率的关系。结果显示,测点平均温度与燃料棒功率基本呈线性关系,其测点温度随燃料棒功率的增加而增加,测温表征性随燃料棒功率的升高而变差。研究结果为堆芯出口温度测量的校正提供了一定的依据。  相似文献   

9.
为建立低温供热堆热工水力系统的计算流体力学(CFD)仿真模型,针对供热堆堆芯燃料组件结构复杂的特点,采用多孔介质模型对堆芯环形燃料组件进行简化建模,多孔介质的孔隙率、渗透率以及惯性阻力系数通过对1组环形燃料组件精细化CFD模拟结果,采用多孔模型进行拟合得到。典型运行工况的计算结果表明:针对复杂几何采用多孔介质模型简化能大幅提高计算的经济性,多孔介质模型能正确反映参数整体分布趋势,堆芯入口最大流量分配不均匀系数为1.07。本文研究结果对基于环形燃料组件的低温供热堆中热工水力安全设计具有参考价值。  相似文献   

10.
为了准确探究反应堆冷却剂与燃料组件间存在流固耦合行为对燃料组件振动特性的影响,本文采用计算流体动力学(CFD)软件Fluent平台,运用其中的动态网格技术,以压水堆燃料组件为研究对象,通过建立燃料组件模拟棒束、堆芯围板以及冷却剂模型,实现燃料组件与堆芯围板分别单独运动工况的燃料组件附加质量计算。结果显示:燃料组件运动工况下,燃料组件附加质量系数均值为2.4712;围板运动工况下,燃料组件附加质量系数均值为–3.4713,均与文献值偏差小于5%。叠加附加质量后,燃料组件振动频率计算值与水中振动试验测试结果偏差小于5%,验证了分析方法的合理性。本研究建立的仿真计算方法能够用于压水堆燃料组件附加质量计算。  相似文献   

11.
分析了中国实验快堆事故停堆后余热的排放过程。对热钠池中的流动与传热采用多孔介质模型的全三维数值模拟,对堆芯支路、事故热交换冷却回路和空冷塔冷却支路采用一维系统分析程序进行数值模拟。通过三维部分和一维部分相互耦合,模拟了余热排放的瞬态过程,得到了堆芯出口温度、燃料元件包壳的最高温度、余热热交换器的余热排放功率等许多重要参数随时间的变化曲线,对中国实验快堆的安全设计有重要的参考价值  相似文献   

12.
使用STAR-CCM+软件对三环路压水堆压力容器上腔室流场进行了大规模、精细化三维数值模拟,并采用组分跟踪方法分别对157个燃料组件出口冷却剂流动进行计算,构造了一个具有3×157个元素的“上腔室交混矩阵”,用该矩阵即可定量、精确地描述冷却剂从堆芯流出后,经上腔室内交混并再分配到各热管道的复杂流动过程。研究发现堆芯流出的冷却剂在压力容器上腔室内的交混是并不充分的,径向上不同位置燃料组件流出的冷却剂会在上腔室同热管道的接口区域存在明显的对应关系,而燃料组件径向功率分布的差异必然导致热管道中冷却剂热分层现象的产生。   相似文献   

13.
中国实验快堆(CEFR)在紧急停堆工况下,会在热钠池上部空间形成热分层现象。热分层出现后,由于上腔室底部存在大量的冷钠(相对而言),这将延缓一回路自然循环的建立。同时,冷钠的存在还会降低自然循环的流量,并对事故停堆后堆芯的冷却产生不利影响。因此,热分层现象应当引起广泛注意。从设备结构的完整性分析上看,快堆热分层现象的出现对堆容器和部分堆内构件是不利的,会使这些部件在结构内部形成明显的热应力,对堆的安全运行构成隐患。本文调研了国内外在该领域的研究状况,分析国外已有的实验研究和理论计算进展,并结合快堆现有的计算分析程序,对CEFR的热分层现象进行深入和较为全面的计算分析。通过计算分析可以看到,在全厂断电工况下,在热钠池的上部会初步形成稳定的热分层,分层界面位于中间热交换器入口的下方,但是热分层现象不会对堆的自然循环构成影响。  相似文献   

14.
本文利用系统分析软件SAC-3D对美国快通量试验堆(FFTF)堆芯及一回路进行了建模,并根据国际原子能机构(IAEA)提供的FFTF未能紧急停堆的失流实验的边界条件数据进行了事故瞬态仿真计算。计算得到堆芯热工水力及中子物理关键参数,仿真结果与实验测量数据符合较好。对比结果验证了SAC 3D在模拟液态金属冷却快堆事故工况中的有效性与准确性,也证明了FFTF堆型具有可靠的非能动安全性。  相似文献   

15.
One aspect of the Westinghouse AP1000™1 reactor design is the reduction in the number of major components and simplification in manufacturing. One design change relative to current Westinghouse reactors of similar size is that AP1000 reactor vessel has two nozzles/hot legs instead of three. With regard to fuel performance, this design difference creates a different flow field in the reactor vessel upper plenum. The flow exiting from the core and entering the upper plenum must turn toward one of the two outlet nozzles and flow laterally around numerous control rod guide tubes and support columns. Also, below the upper plenum are the upper core plate and the top core region of the 157 fuel assemblies and 69 guidetube assemblies.To determine how the lateral flow in the top of the core and upper plenum compares to the current reactors a CFD model of the flow in the upper portion of the AP1000 reactor vessel was created.Before detailed CFD simulations of the flow in the entire upper plenum and top core regions were performed, conducting local simulations for smaller sections of the domain provided crucial and detailed physical aspects of the flow. These sub-domain models were used to perform mesh sensitivities and to assess what geometrical details may be eliminated from the larger model in order to reduce mesh size and computational requirements. In this paper, CFD analysis is presented for two subdomain models: the top core region and control rod guide tube region. These models are chosen for simulation because guide tube and top core region (including top grid, top nozzle, and hold-down device) are the major components of upper plenum effecting the flow patterns and pressure distribution.The top core region, corresponding to ¼ of fuel assembly, includes components as upper part of the fuel assemblies (top grid, fuel rods, top nozzle), core component hold-down devices, and upper core plates. These components distribute the core flow to different sections of guidetube regions. Mesh sensitivity studies have been conducted for each individual part in order to determine the proper geometrical simplifications. Pressure drop measurement data are compared with the predicted CFD results and act as a guideline for the mesh selection.The guidetube region includes control rod guidetubes themselves, adjacent support columns and open regions. In this study, two models of subdomains are analyzed: (1) a ¼ section of one control rod guide tube by itself and (2) a representative unit cell containing two ¼ sections of adjacent control rod guide tubes and one ¼ section of a neighboring support column.Predicted flow rates at each of the outflow locations in conjunction with results from the mesh sensitivity studies provide guidance on (1) what geometry to preserve or remove, (2) what geometry can be simplified to reduce the required mesh, and (3) an estimate of the total mesh required to model the entire upper plenum and top fuel domain.The commercial CFD code STAR-CCM+ is employed to generate the computational mesh, to solve the Reynolds-averaged Navier–Stokes equations for incompressible flow with a Realizable k? turbulence model, and to post-process the results.  相似文献   

16.
A study of the reactor core thermohydraulics in an LMFBR has been performed for the strongly coupled thermo-hydrodynamic transients. A numerical method to solve the coupled energy-momentum equations among multichannels in a core is presented and the computer code ORIFS-TRANSIENT has been developed.The results of sample calculations for a flow coastdown transient to natural circulation following a reactor scram in a typical loop-type LMFBR are as follows: (1) the inter-subassembly coolant flow redistribution due to buoyancy forces is significant under the low flow condition, such as natural circulation; (2) the maximum coolant temperature was decreased by about 80°C (corresponding to about 22% in terms of hot channel factor) due to the flow redistribution; (3) due to thermohydrodynamic coupling between upper plenum and other regions, the maximum coolant temperature was decreased by about 9°C; (4) due to inter-subassembly heat redistribution, the maximum coolant temperature was increased by about 7°C.  相似文献   

17.
A fully natural circulation-based system is adopted in the decay heat removal system (DHRS) of an advanced loop type fast reactor. Decay heat removal by natural circulation is a significant passive safety measure against station blackout. As a representative of the advanced loop type fast reactor, DHRS of the sodium fast reactor of 1500 MWe being designed in Japan comprises a direct reactor auxiliary cooling system (DRACS), which has a dipped heat exchanger in the reactor vessel, and two units of primary reactor auxiliary cooling system (PRACS), which has a heat exchanger in the primary-side inlet plenum of an intermediate heat exchanger in each loop. The thermal-hydraulic phenomena in the plant under natural circulation conditions need to be understood for establishing a reliable natural circulation driven DHRS. In this study, sodium experiments were conducted using a plant dynamic test loop to understand the thermal-hydraulic phenomena considering natural circulation in the plant under a broad range of plant operation conditions. The sodium experiments simulating the scram transient confirmed that PRACS started up smoothly under natural circulation, and the simulated core was stably cooled after the scram. Moreover, they were conducted by varying the pressure loss coefficients of the loop as the experimental parameters. These experiments confirmed robustness of the PRACS, which the increasing of pressure loss coefficient did not affect the heat removal capacity very much due to the feedback effect of natural circulation.  相似文献   

18.
为准确分析池式快堆热钠池内的热工水力学特性,在已开发出的用于池式快堆系统分析的钠池三维计算模型的基础上,应用多孔介质方法建立钠池内中间热交换器、主泵、事故热交换器及屏蔽柱模型,完成了含有多孔介质模型和复杂几何边界的钠池三维计算模型开发。将该模型嵌入池式快堆系统分析软件SAC-CFR后,分析了中国实验快堆在稳态运行和紧急停堆工况下钠池内的流场分布,初步证明了所采用的多孔介质模型的合理性,为下一步非能动余热排出系统模型的开发做准备。  相似文献   

19.
Analytical model requirements for core natural convection analyses are reviewed. Then results from current modeling on intra-assembly flow and heat redistribution are compared with several sources of experimental data. Also, data are described on low flow rod bundle hydraulic characteristics. Numerous sensitivity studies are also presented which show the effect and importance of various parameters on core temperatures during natural circulation, including inter-assembly flow redistribution, pump flow coastdown, rod size and fuel type, control system scram worth and shutdown power level. A system of codes for making the natural circulation predictions is also described, i.e., a plant-wide dynamic code, a whole-core system dynamic code and a hot channel dynamic analysis code. The overall approach of verifying the core related codes is presented, along with the interaction and linkage between all the codes. Confirmation of this system of three codes will bee through prototypic data obtained from EBR-II and FFTF natural circulation experiments.  相似文献   

20.
In Japanese prototype fast reactor, Monju, an inner barrel with several flow holes is placed at an upper plenum adjacent to a core outlet. When the reactor scram occurs, a cold coolant flows into the bottom of the upper plenum through the core outlet and thermal stratification will appear at the upper plenum. And thus, the inner barrel may be damaged by a thermal stress due to thermal stratification. In this study, a structural integrity assessment method is developed based on fluid-structure interaction analysis and cumulative damage rule. First, a three-dimensional thermal-hydraulics analysis is conducted to simulate a turbine trip test from 40% power operation. Full power output conditions are also simulated by modifying conditions of 40% power output conditions. Next, the thermal stress analysis is modified by adding a practical condition, such as a bending stress. Then, the thermal stress is calculated at each location of the inner barrel. Finally, cumulative damage is evaluated by using the present method. It is concluded that a main factor of cumulative damage is a stress near flow holes that causes stress concentration. It is also found that thermal transient within several hundred seconds after the reactor scram is an important factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号