首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
This paper considers the distributed event‐triggered consensus problem for multi‐agent systems with general linear dynamics under undirected graphs. Based on state feedback, we propose a novel distributed event‐triggered consensus controller with state‐dependent threshold for each agent to achieve consensus, without continuous communication in either controller update or triggering condition monitoring. Each agent only needs to monitor its own state continuously to determine if the event is triggered. It is proved that there is no Zeno behavior under the proposed consensus control algorithm. To relax the requirement of the state measurement of each agent, we further propose a novel distributed observer‐based event‐triggered consensus controller to solve the consensus problem in the case with output feedback and prove that there is no Zeno behavior exhibited. Finally, simulation results are given to illustrate the theoretical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
This paper considers the distributed event‐triggered consensus problem for multi‐agent systems with general linear dynamics under a directed graph. We propose a novel distributed event‐triggered consensus controller with state‐dependent threshold for each agent to achieve consensus. In this strategy, continuous communication in both controller update and triggering condition monitoring is not required, which means the proposed strategy is fully continuous communication free. Each agent only needs to monitor its own state continuously to determine if the event is triggered. Additionally, the approach shown here provides consensus with guaranteed positive inter‐event time intervals. Therefore, there is no Zeno behavior under the proposed consensus control algorithm. Finally, numerical simulations are given to illustrate the theoretical results.  相似文献   

3.
This paper studies the leader‐following consensus problem for Lipschitz nonlinear multi‐agent systems using novel event‐triggered controllers. A distributed adaptive law is introduced for the event‐based control strategy design such that the proposed controllers are independent of system parameters and only use the relative states of neighboring agents, and hence are fully distributed. Due to the introduction of an event‐triggered control scheme, the controller of the agent is only triggered at it's own event times, and thus reduces the amount of communication between controller and actuator and lowers the frequency of controller updates in practice. Based on a quadratic Lyapunov function, the event condition which uses only neighbor information and local computation at trigger instants is established. Infinite triggers within a finite time are also verified to be impossible. The effectiveness of the theoretical results are illustrated through simulation examples.  相似文献   

4.
The paper addresses the distributed event‐triggered consensus problem in directed topologies for multi‐agent systems (MAS) with general linear dynamic agents. A co‐design approach is proposed to determine parameters of the consensus controller and its event‐triggered mechanism (ETM), simultaneously. This approach guarantees asymptotic stability along with decreasing data transmission among agents. In the proposed event‐based consensus controller, each agent broadcasts data to the neighbors only at its own triggering instants; this differs from previous studies in which continuous data streams among agents were required. Furthermore, the proposed control law is based on the piecewise constant functions of the measurement values, which are updated at triggering instants. In this case the control scheme decreases the communication network usage, energy consumption, and wear of the actuator. As a result, it facilitates distributed implementation of the proposed consensus controller for real‐world applications. A theorem is proved to outline sufficient conditions to guarantee the asymptotic stability of the closed‐loop system with the event‐based consensus controller. Another theorem is also proved to show the Zeno behavior exclusion. As a case study, the proposed event‐based controller is applied for a diving consensus problem to illustrate the effectiveness of the method.  相似文献   

5.
This paper proposes a distributed edge event‐triggered (DEET) scheme of multi‐agent systems via a communication buffer to reduce unnecessary update of controllers induced by fast information transmission. This edge scheme avoids a synchronous phenomenon in node event‐triggered mechanism, in which the triggering of one agent activates information transmission of all edges linked with this agent. Hence, the node event‐triggered scheme leads to unnecessary update of control protocols while the DEET provides a new approach without constrains on synchronous phenomenon of edge information exchange. That is, the communication on each edge is independent with other edges. In addition, we investigate another case where edge information transmission is subject to quantization and a quantized edge event‐triggered control protocol is proposed. Note that such a quantized protocol guarantees asymptotical consensus instead of bounded consensus in most of the existing literature. Meanwhile, both DEET and quantized edge event‐triggered schemes have nontrivial properties of excluding Zeno behavior. Furthermore, an algorithm is provided to avoid continuous event detection; hence, the communication traffic of the whole network is reduced significantly. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, the event‐triggered dynamic output feedback control problem for linear systems with actuator saturation is investigated. Event‐triggered scheme only transmits the corresponding signal when the event‐triggered condition is violated. Due to its advantage of saving communication resources, it is utilized to design the dynamic output feedback controller. A criterion is established to guarantee the stability of the closed‐loop system by introducing an exponential term for the Lyapunov function, which corresponds to the exponential term in the event‐triggered condition. The explicit design of the coefficient matrices of the controller is presented. Furthermore, a lower bound of the inter‐event time is calculated to avoid Zeno behavior. An optimization algorithm is then formulated to maximize the estimation of the domain of attraction. Finally, a numerical example is given to illustrate the effectiveness of our methods and to show the trade‐off between the size of the domain of attraction and communication resources saving.  相似文献   

7.
This paper addresses the finite‐time and the prescribed finite‐time event‐triggered consensus tracking problems for second‐order multi‐agent systems (MASs) with uncertain disturbances. The prescribed finite‐time event‐triggered consensus of the second‐order disturbed MASs was obtained for the first time and the controller is nonsingular. Furthermore, a new self‐triggered control scheme is presented for the finite‐time consensus tracking, and the continuous communication can be avoided in the triggering condition monitoring. Hence, the finite‐time consensus tracking can be achieved with intermittent communication. Moreover, Zeno behavior is excluded for each follower. The efficiency of the proposed algorithms is verified by numerical simulations.  相似文献   

8.
This article presents a distributed adaptive integral‐type event‐triggered scheme (ETS) and an agent‐dependent switching strategy with dwell time to solve the cooperative output regulation problem for switched multiagent systems. First, by constructing an adaptive law to dynamically update the time‐varying coupling weights for all the communication links, a fully distributed ETS is designed, where only the local information of the topology is adopted. Based on the integral‐type triggering condition, the interevent interval is substantially enlarged and Zeno behavior is explicitly ruled out. Second, each agent permits all the subsystems to be unstabilizable. The switching signal for each agent is different, and any adjacent switches of each agent satisfy the preset dwell time. Under the designed switching strategy, the solvability of the regulation problem is guaranteed. Finally, the effectiveness of the designed ETS and switching strategy is substantiated by an example.  相似文献   

9.
This article addresses the problem of global adaptive finite‐time control for a class of p‐normal nonlinear systems via an event‐triggered strategy. A state feedback controller is first designed for the nominal system by adding a power integrator method. Then, by the skillful design of adaptive dynamic gain mechanism, a novel event‐triggered controller is constructed for uncertain nonlinear system without homogeneous growth condition. It is proved that the global finite‐time stabilization of p‐normal nonlinear systems is guaranteed and the Zeno phenomenon is excluded. Finally, two examples are presented to indicate the effectiveness of the proposed control scheme.  相似文献   

10.
This paper considers the design of mixed event/time‐triggered controllers for networked control systems (NCSs) under transmission delay and possible packet dropout. Assuming that a conventional delayed static output feedback L2‐gain controller exists, we propose an output‐based mixed event/time‐triggered communication scheme for reducing the network traffic in a NCS. Moreover, we show that a conventional delayed static output feedback L2‐gain controller can be obtained by solving a linear matrix inequality with a matrix equality constraint. A numerical example is proposed for demonstrating the theoretical results.  相似文献   

11.
This paper addresses the model‐based event‐triggered predictive control problem for networked control systems (NCSs). Firstly, we propose a discrete event‐triggered transmission scheme on the sensor node by introducing a quadratic event‐triggering function. Then, on the basis of the aforementioned scheme, a novel class of model‐based event‐triggered predictive control algorithms on the controller node is designed for compensating for the communication delays actively and achieving the desired control performance while using less network resources. Two cases, that is, the value of the communication delay of the first event‐triggered state is less or bigger than the sampling period, are considered separately for certain NCSs, regardless of the communication delays of the subsequent event‐triggered states. The codesign problems of the controller and event‐triggering parameter for the two cases are discussed by using the linear matrix inequality approach and the (switching) Lyapunov functional method. Furthermore, we extended our results to the NCSs with systems uncertainties. Finally, a practical ball and beam system is studied numerically to demonstrate the compensation effect for the communication delays with the proposed novel model‐based event‐triggered predictive control scheme. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, the dynamic self‐triggered output‐feedback control problem is investigated for a class of nonlinear stochastic systems with time delays. To reduce the network resource consumption, the dynamic event‐triggered mechanism is implemented in the sensor‐to‐controller channel. Criteria are first established for the closed‐loop system to be stochastically input‐to‐state stable under the event‐triggered mechanism. Furthermore, sufficient conditions are given under which the closed‐loop system with dynamic event‐triggered mechanism is almost surely stable, and the output‐feedback controller as well as the dynamic event‐triggered mechanism are co‐designed. Moreover, a dynamic self‐triggered mechanism is proposed such that the nonlinear stochastic system with the designed output‐feedback controller is stochastically input‐to‐state stable and the Zeno phenomenon is excluded. Finally, a numerical example is provided to illustrate the effectiveness of proposed dynamic self‐triggered output‐feedback control scheme.  相似文献   

13.
This paper presents an approximation design for a decentralized adaptive output‐feedback control of large‐scale pure‐feedback nonlinear systems with unknown time‐varying delayed interconnections. The interaction terms are bounded by unknown nonlinear bounding functions including unmeasurable state variables of subsystems. These bounding functions together with the algebraic loop problem of virtual and actual control inputs in the pure‐feedback form make the output‐feedback controller design difficult and challenging. To overcome the design difficulties, the observer‐based dynamic surface memoryless local controller for each subsystem is designed using appropriate Lyapunov‐Krasovskii functionals, the function approximation technique based on neural networks, and the additional first‐order low‐pass filter for the actual control input. It is shown that all signals in the total controlled closed‐loop system are semiglobally uniformly bounded and control errors converge to an adjustable neighborhood of the origin. Finally, simulation examples are provided to illustrate the effectiveness of the proposed decentralized control scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
15.
An event‐triggered observer‐based output feedback control issue together with triggered input is investigated for a class of uncertain nonlinear systems subject to unknown external disturbances. Two separate event‐triggered conditions are located on the measurement channel and control channel, respectively. An event‐triggered extended state observer (ETESO) is employed to estimate unmeasurable states and compensate uncertainties and disturbances in real time while it is not required for real‐time output measurement. Then, combined with backstepping method and active disturbance rejection control, an output feedback control scheme is proposed, where an event‐triggered input is developed for reducing the communication rate between the controller and the actuator. The triggered instants are determined by a time‐varying event‐triggered condition. Two simulations, including a numerical example and an permanent‐magnet motor, are illustrated to verify the effectiveness of the proposed schemes.  相似文献   

16.
This paper investigates the strictly dissipative stabilization problem for multiple‐memory Markov jump systems with network communication protocol. Firstly, for reducing data transmission, we put forward a novel mode‐dependent event‐triggered communication scheme based on aperiodically sampled data. Secondly, a Markov jump system with general transition rates is considered to make the result more applicable, where the transition rates of some jumping modes allow to be completely known, or partially known, or even completely unknown. Thirdly, a less restrictive Lyapunov‐Krasovskii functional, which is only required to be positive definite at end points of each subinterval of the holding intervals, is first introduced for event‐triggered control issue. Based on the above methods, a sufficient condition with less conservatism is obtained to ensure the stochastic stability and dissipativity of the resulting closed‐loop system. Meanwhile, an explicit design method of the desired controller is achieved. Finally, two numerical examples are presented to demonstrate the effectiveness and advantage of the proposed method.  相似文献   

17.
This paper presents a new sporadic control approach to the tracking problem for MIMO closed‐loop systems. An LTI sampled data plant with unmeasurable state affected by external unknown disturbances is considered. The plant is interconnected to an event‐based digital dynamic output‐feedback controller via a network. Both the external reference and the unknown disturbance are assumed to be generated as the free output response of unstable LTI systems. The main feature of the new event‐driven communication logic (CL) is that it works without the strict requirement of a state vector available for measurement. The purpose of the CL is to reduce as much as possible the number of triggered messages along the feedback and feedforward paths with respect to periodic sampling, still preserving internal stability and without appreciably degrading the control system tracking capability. The proposed event‐driven CL is composed of a sensor CL (SCL) and of a controller CL (CCL). The SCL is based on the computation of a quadratic functional of the tracking error and of a corresponding suitably computed time‐varying threshold: a network message from the sensor to the controller is triggered only if the functional equals or exceeds the current value of the threshold. The CCL is directly driven by the SCL: the dynamic output controller sends a feedforward message to the plant only if it has received a message from the sensor at the previous sampled instant. Formulation of the controller in discrete‐time form facilitates its implementation and provides a minimum inter‐event time given by the sampling period. An example taken from the related literature shows the effectiveness of the new approach. The focus of this paper is on the stability and performance loss problems relative to the sporadic nature of the control law. Other topics such as network delay or packets dropout are not considered. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The problem of event‐triggered guaranteed cost consensus of discrete‐time singular multi‐agent systems with switching topologies is investigated in this paper. To save the limited network communication bandwidth of multi‐agent systems, a novel event‐triggered networked consensus mechanism is proposed. Based on the graph theory and singular system theory, sufficient conditions of guaranteed‐cost consensus of discrete‐time singular multi‐agent systems are derived and given in the form of the linear matrix inequalities, respectively. A co‐design approach of the multi‐agent consensus gain matrix and the event‐triggered parameters is presented. Furthermore, based on the approach of second class equivalent transformation for singular systems, the cost function is determined, and an explicit expression of consensus functions is presented. Finally, a numerical example is provided to illustrate the effectiveness of the proposed method.  相似文献   

19.
The second‐order consensus problem of nonlinear leader‐following multi‐agent systems is investigated in this paper. To solve the case that the velocities of all agents cannot be measured and the nonlinearity is unknown, an observer‐based dynamic output feedback controller is proposed based on a non‐separation principle method. Using the feedback domination technique, it is shown that the systems output can reach consensus by choosing appropriate gains. Two examples are given to verify the efficiency of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we present a robust fault‐tolerant control scheme for constrained multisensor linear parameter‐varying systems, subject to bounded disturbances, that utilises multiple sensor fusion. The closed‐loop scheme consists of a tube model predictive control‐based feedback tracking controller and sensor‐estimate fusion strategy, which allows for the reintegration of previously faulty sensors. The active fault‐tolerant fusion‐based mechanism tracks the healthy‐faulty transitions of suitable residual variables by means of set separation and precomputed transition times. The sensor‐estimate pairings are then reconfigured based on available healthy sensors. Under the proposed scheme, robust preservation of closed‐loop system boundedness is guaranteed for a wide range of sensor fault situations. An example is presented to illustrate the performance of the fault‐tolerant control strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号