首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对如何产生均匀和稳定的超声速非平衡等离子体这一科学问题,为进一步探究超声速气流电容耦合射频放电特性,建立了超声速非平衡电离磁流体动力技术实验系统,开展了Ma=3.4条件下,超声速气流边界层与主流中心区的电容耦合射频放电特性研究;同时针对超声速放电等离子体的实时诊断问题,基于均匀射频放电模型,联立能量平衡方程,建立等离子体诊断模型对平均电子数密度与电子温度等参数进行诊断。结果表明:超声速气流条件下,通过电容耦合射频可以产生均匀和稳定的放电等离子体;分子数密度是影响超声速气流放电特性的主要因素,同时超声速气流对平均电子温度的影响很小,约为0.46 e V。  相似文献   

2.
章程  邵涛  马浩  许家雨  任成燕  严萍 《高电压技术》2012,38(7):1648-1654
为研究ns脉冲激励下的气体放电现象,近年来基于高能电子逃逸引导放电发展的相关研究受到了广泛关注。利用上升沿15ns,半高宽30~40ns的重复频率ns脉冲激励极不均匀电场下大气压空气放电,将实验测量和理论计算相结合,研究了基于高能电子逃逸击穿的ns脉冲气体放电特性。实验结果表明高重复频率下仍可获得大面积均匀的弥散放电,放电中存在能量范围为10~130keV的X射线。理论计算结果表明施加120kV负极性脉冲条件下电场强度最高可达718kV/cm,高于大气压空气中产生逃逸电子的场强阈值,放电中X射线与逃逸电子有关。进一步对从理论上对ns脉冲气体放电特性进行探索,极不均匀电场下的场致发射为放电提供初始电子,其中能量较高的电子在气隙运动过程中发生逃逸,与气体分子碰撞产生二次电子,并辐射出X射线。逃逸电子与X射线共同作用,有利于获得大面积的弥散放电。  相似文献   

3.
脉冲放电等离子体被广泛用于气态污染物处理的研究,放电参数直接影响反应器内等离子体状态,进而影响污染物的去除效果,研究不同条件下的放电特性可为脉冲等离子体技术的应用提供参考.本文利用线板式脉冲等离子体反应器, BPFN型高压脉冲电源供电, 研究了电源电容、极板间距及介质阻挡对放电特性的影响.结果表明:增大电源电容可以有效地提高电源能量效率;增大极板间距,峰值电压VP增大,峰值电流IP减小,脉宽减小,波形更加理想;陶瓷板阻挡放电可解决间隙火花放电,使脉冲电晕放电空间分布均匀,在大范围内提高电源能量效率.  相似文献   

4.
针对轨道炮的应用需求,为解决电感储能型脉冲电源炮口消弧与剩余能量回收的问题,在绞肉机电路基础上提出了一种新型超导储能脉冲电源拓扑。建立了脉冲电源与简单轨道炮的仿真模型,仿真实现了轨道电流在电枢出炮口前降为0的设计并进行了能量回收,分析了电容参数和终止放电时机对系统性能的影响。仿真与实验结果表明:该拓扑可以实现充电、放电、终止放电、能量回收4种工作模态;在充电电流16.5 A的条件下,最终输出的脉冲电流峰值达到了166 A,而且在放电过程后,回收了部分能量,回馈电流为11.2 A,这减少了系统45.78%的能量损耗;电容参数的设计应同时考虑对系统电压应力和脉冲电流波形的要求,终止放电时机应在考虑延时的前提下尽量后移。  相似文献   

5.
为满足高超声速磁流体流动控制实验研究的需要,采用同步高压脉冲电离和直流维持放电技术,研制了一种适用于高超声速激波风洞实验系统的高压脉冲直流等离子体电源。首先进行了静止低气压条件下的放电特性研究。通过高速电荷耦合器件(charge coupled device,CCD)可以发现:初始时刻直流放电强烈,放电电流达到16A;随着电容储存能量的消耗,放电电流逐渐减小,放电强度缓慢减弱,直至完全消失,放电形状近似为一圆形。然后进行了高超声速气流中无磁场激励、磁流体(magnetohydrodynamics,MHD)逆气流减速激励和MHD顺气流加速激励条件下的放电特性研究,提出了用于高超声速激波风洞实验系统的MHD激励强度判定标准。研究结果表明:高超声速气流中施加磁场能够起到稳弧的作用,有磁场激励条件下的电源能量消耗约是无磁场激励条件下的3~4倍;MHD加速激励同MHD减速激励的功率相等,而MHD加速激励的电源能量消耗高于MHD减速激励的电源能量消耗。  相似文献   

6.
为满足电脉冲破碎红砂岩实验对高压脉冲电源要求,采用模块化思想设计了基于Marx发生器的高压脉冲电源.设计输出峰值电压为10 kV的单电路板并进行仿真分析,然后由3个单电路板串联设计红砂岩破岩用高压脉冲电源.实验结果表明,高压脉冲电源输出电压约26 kV、脉宽约28.5μs、上升沿小于500 ns;采用25 mm间距电极钻头,该脉冲电源放电120次时,红砂岩破岩钻孔直径约5.5 cm,破岩深度约2 cm,破岩效果良好.  相似文献   

7.
开关在脉冲功率技术中极其重要,其已成为制约脉冲功率技术发展的主要技术瓶颈。为了满足高电压、大电流、高电荷转移量、电极烧蚀小、寿命长的要求,文中设计了一个由轴向磁场控制的旋转电弧间隙开关,研究了其电磁场分布及轴向磁场下电弧的运动机制,并进行了初步实验。结果表明此开关中的电弧确实在轴向磁场控制下做旋转运动,且运动速度很快,不需要对触发脉冲进行陡化就能得到纳秒级脉冲。实验放电波形比较稳定,分散性为2ns;开关电极表面的烧蚀小,有利于延长开关的寿命;开关工作参数为:电压23kV,单脉冲能量0.314MJ,峰值电流100kA,电荷转移量27.3C/脉冲。  相似文献   

8.
表面介质阻挡放电(SDBD)激励器在等离子体主动流动控制中应用广泛,其表面电离波(SIW)传播特性是优化激励器控制效果的重要参数之一。该文分别以聚四氟乙烯(PTFE)和环氧树脂(ER)为介质材料,制作了多地电极阵列结构的表面介质阻挡放电激励器,采用纳秒高压脉冲电源作为激励源,对表面介质阻挡放电中的表面电离波传播特性进行了实验研究。实验结果表明,在脉冲电压的上升沿发生了两次击穿,形成放电通道,分别为初级电离波和次级电离波。在电流曲线上表现为有两个峰值,第一个电流峰值指示初级电离波,第二个电流峰值指示次级电离波。对不同位置处的电流曲线进行积分得到其电荷分布与演化,发现靠近高压电极处的电荷消散的较快,远离高压电极处的电荷消散的较慢,且聚四氟乙烯介质在放电后有明显的电荷残余,而环氧树脂介质电荷残余不明显。此外,研究了外加电压幅值和重复频率对SIW传播特性的影响,结果表明,当保持电压幅值不变(14kV),在100~1 000Hz范围内,脉冲重复频率越高,SIW的电流衰减速率越快,而SIW传播速度变化不大。保持重复频率不变(500Hz),在8~17kV范围内,脉冲电压幅值对SIW的电流衰减速率基本没有影响,但是SIW的传播速度随着脉冲电压幅值的增大而增加。该研究结果有助于SDBD激励器的放电参数优化。  相似文献   

9.
大气压空气中纳秒脉冲介质阻挡放电均匀性的研究   总被引:3,自引:0,他引:3  
为了实现大气压空气中纳秒脉冲均匀介质阻挡放电(DBD),利用上升沿15ns,半高宽30~40ns的正极性纳秒脉冲激发DBD,并由电压电流和放电图像研究DBD的特性,分析均匀放电实现的条件和特征。实验结果表明放电电流呈双极性,且电气参数要比交流及微秒脉冲DBD的高,在一定条件下可获得均匀模式放电。通过重复频率和气隙距离对放电均匀性的影响研究发现,2mm空气间隙中,双层介质阻挡时重复频率对放电均匀性影响不明显,但当间隙距离从2~8mm延长时,放电明显由均匀模式向丝状模式过渡。此外,对纳秒脉冲DBD放电均匀性与施加脉冲上升沿的关系进行了探讨。  相似文献   

10.
Pb(Zr_(0.95)Ti_(0.05))O_3(PZT95/5)铁电陶瓷具有较大的剩余极化强度,在冲击波压力作用下会发生铁电–反铁电相变去极化,从而释放出铁电陶瓷内部的束缚电荷。为此提出一种新型的小型高电压大电流脉冲电源,以炸药驱动铁电体脉冲发生器作为初始电源,为高电压脉冲电容器提供充电电流,当充电结束时电容器电压达到最大值,再触发电容器放电开关使其闭合,可在高阻抗负载上获得快前沿高电压、大电流电脉冲。实验设计的PZT95/5铁电陶瓷电源输出矩形脉冲电流,最大值约47 A、脉冲宽度约3.9μs、上升前沿210 ns,经脉冲电容器和锐化开关进行脉冲调制后,在负载上获得脉冲电流峰值大于1 kA、脉冲半高宽约130 ns、上升前沿15 ns,负载电压达到80 kV以上。实验结果与理论计算基本一致,为研制轻小型高电压脉冲源提供了一种新的技术途径。  相似文献   

11.
阐述用于EUV光刻技术的脉冲功率电源的设计.该脉冲电源由充电电容组,半导体开关(IGBT),脉冲变压器和四级磁压缩回路组成.解释磁开关的工作原理,提供各关键元件的设计参数.根据磁性材料的物理特性参数,利用Pspice 仿真软件建立磁芯模型,构建磁开关和仿真电路,对各级电压和电流波形进行分析,进而设计调整各级磁开关的参数.实验结果表明,该脉冲电源输出峰值为30 kV,上升沿为<85 ns,脉冲宽度<100 ns的脉冲信号.  相似文献   

12.
万枫  李孜 《电源技术》2012,(1):118-120
阐述用于EUV光刻技术的脉冲功率电源的设计。该脉冲电源由充电电容组,半导体开关(IGBT),脉冲变压器和四级磁压缩回路组成。解释磁开关的工作原理,提供各关键元件的设计参数。根据磁性材料的物理特性参数,利用Pspice仿真软件建立磁芯模型,构建磁开关和仿真电路,对各级电压和电流波形进行分析,进而设计调整各级磁开关的参数。实验结果表明,该脉冲电源输出峰值为30 kV,上升沿为<85 ns,脉冲宽度<100 ns的脉冲信号。  相似文献   

13.
《高压电器》2016,(3):44-49
为了改善电感储能脉冲功率源的输出波形,提出一种基于电爆炸金属丝断路开关的准方波输出脉冲功率源。该脉冲源以脉冲电容器为初始储能源,通过脉冲形成网络对电爆炸金属丝开关放电,当电流达到峰值附近时,电爆炸金属丝开关断开,将能量切换到负载上。由于脉冲形成网络中电感电流不能突变,所以负载上能得到数倍于初始储能电容充电电压的脉冲输出;由于脉冲形成网络中电容的续流作用,所以负载上能得到准方波脉冲输出。通过理论分析和电路仿真分析,确定了脉冲形成网络的电感电容级数和爆炸丝参数。对功率源进行了实验验证,实验结果表明:在1μF初始充电电容充电32 kV时,在10Ω负载上得到电压幅值83 kV,半高宽279 ns,90%平顶172 ns左右的脉冲输出,证明了该原理的脉冲功率源可行性。  相似文献   

14.
新型无间隙纳秒级脉冲电源的优化设计   总被引:1,自引:1,他引:0  
胡胜  李胜利  李晋城  张晗 《高电压技术》2010,36(9):2309-2315
基于磁压缩和SOS效应原理,设计了一种新型无间隙ns级脉冲电源。通过Pspice电路仿真分析和试验研究,着重探讨了关键参数对输出电压的影响。研究结果表明:电源在前级饱和变压器TV1匝数为1:20,磁压缩电感MS匝数为13,后级升压饱和变压器TV2匝数为2:10时能获得较高的输出电压峰值,负载为50Ω时,脉冲电压峰值-51kV,脉宽120ns,峰值前沿60ns。该电源将在放电等离子体处理环境污染中具有良好的应用前景。  相似文献   

15.
针对高压脉冲电场杀菌技术对于系统核心部分高压脉冲电源的要求,设计一种输出脉冲电压峰值可达5~30 kV(100 V步进可调),输出脉冲频率为200~1 000 Hz可调,脉冲宽度为0.2~2μs可调,脉冲前沿<100 ns的高压脉冲电源。该系统利用单片机进行自动控制,通过可调直流高压电源和储能元件作为能源系统,利用氢闸流管作为主放电开关,控制脉冲峰值和频率,最后通过脉冲变压器升压在杀菌腔体的极板上得到所需的脉冲电场。  相似文献   

16.
介质阻挡放电(DBD)是产生低温等离子体的重要方法。实验研究的DBD由上升沿15 ns,半高宽约30ns最高重复频率1 kHz的正极性纳秒脉冲产生,测量了DBD电压、电流以及放电图像。结果表明,空气间隙上发生两次放电,分别发生在施加电压的上升沿和下降沿末端,电流峰值可达百安培量级,峰值功率可以达到MW级。放电图像显示放电分为均匀放电和丝状放电两种模式,且阻挡方式和重复频率都是影响这两种放电模式相互转化的重要因素。  相似文献   

17.
姜慧  邵涛  车学科  章程  李文峰  严萍 《高电压技术》2012,38(7):1704-1710
在大气环境条件下,以环氧为介质阻挡材料,基于单极性ns脉冲电源进行了表面介质阻挡放电实验,研究了电压幅值、电极宽度、电极间距和重复频率对放电等离子体的影响。结果表明ns脉冲表面介质阻挡放电是丝状放电,放电发生在电压脉冲的上升沿阶段;放电电流主要包括两部分脉冲,与放电丝分布的均匀性有着一定的内在关系,外加电压对放电的均匀性以及产生等离子体的长度起作用;电极宽度和间距对放电电流和产生等离子体的发光强度影响不大,电极宽度和间距越小,放电丝分布越均匀,电极宽度存在一个最优值,使得激励器的放电稳定且产生等离子体相对均匀;脉冲重复频率仅对等离子体强度起作用,对放电特性的影响较复杂,不同电极参数下这些影响与放电丝的分布状态有关。  相似文献   

18.
大气压空气中介质阻挡均匀放电产生的等离子体在工业领域具有广阔的应用前景。为研究这种放电的产生条件及机理,利用微间隙介质阻挡放电装置,通过测量放电参数和发射光谱,研究了放电模式的转化过程。结果表明:低电压时电流波形每半个周期存在若干个脉冲宽度很小的脉冲,为微放电丝模式;随着电压增加,电流每半个周期出现了一个宽度较大(约5.5μs)强度较强的脉冲,该较宽电流脉冲上随机叠加了宽度小(约100 ns)强度弱的小脉冲;外加电压峰值达到9.2 kV时,电流波形只存在该较宽放电脉冲,为均匀放电模式。放电发射光谱的研究表明:外加电压增加时谱线强度比降低,即高能电子比例减小。这说明随外加电压增加,微气隙中的放电电场强度是降低的。  相似文献   

19.
为了研究纳秒脉冲表面滑闪放电特性,本文采用一种新型三电极结构的激励器,通过纳秒脉冲叠加负直流的混合激励模式产生表面滑闪放电。实验研究了电压脉冲分量、电压直流分量及两者的差值对纳秒脉冲表面滑闪放电特性的影响。实验结果表明,当脉冲电压幅值固定时,直流电压幅值的改变对脉冲侧电流的影响较小,但对直流源侧电流却影响显著,直流源侧电流随直流电压幅值的增加而增加,发生表面滑闪放电后峰值和速度均增加。直流电压幅值越大,直流源侧电流出现时刻越早。当直流电压幅值固定时,脉冲侧电流和直流源侧电流均随着脉冲电压幅值的增加而增加。实验中存在一个电压阈值(脉冲分量和直流分量电压差值)使纳秒脉冲表面滑闪放电发生,该阈值为22k V。此时发生表面滑闪放电,瞬时功率峰值、单脉冲能量峰值和稳态能量均迅速增加。脉冲直流电压差值相同时,脉冲分量主导脉冲侧电流的大小,直流分量主导直流源侧电流的大小,脉冲分量所占比例的大小对功率和能量损耗的影响较大。此外,利用数码相机拍摄放电图像研究了纳秒脉冲表面滑闪放电的光学特性,放电图像表明,在电极间施加合理的脉冲电压和负直流电压均可产生表面滑闪放电,实现等离子体的拉伸效果,在阻挡介质表面获得大面积的等离子体。  相似文献   

20.
大气压氦气介质阻挡多脉冲辉光放电的形成条件   总被引:1,自引:0,他引:1  
利用高频高压电源,进行大气压氦气介质阻挡放电试验,测量了单脉冲和多脉冲辉光放电的放电回路电流波形,分析了外加电压峰.峰值和频率、放电间隙对多脉冲辉光放电过程的影响,探讨了大气压氦气介质阻挡多脉冲辉光放电的形成条件.研究表明:多脉冲辉光放电的形成条件是较高的外加电压峰-峰值、较低的电源频率,其中较高的外加电压峰-峰值是产生多脉冲辉光放电的必要条件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号