首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 907 毫秒
1.
本研究通过硫酸水解、超声和TEMPO (2,2,6,6-四甲基哌啶氧化物)氧化3种处理方法分别制备了纳米纤维素(CFR-CNC、CFR-CNF和CFR-TNC)及相应薄膜,对纳米纤维素微观形态、结晶度、热稳定性和化学结构进行了表征,同时比较了纳米纤维素薄膜的形态和机械性能。结果表明,3种纳米纤维素具有不同的长宽比(29.2、163.7、132.2)和结晶度(62.5%、52.8%、43.9%)。红外光谱图表明,3种纳米纤维素的纤维素分子结构并未改变,且CFR-TNC成功引入羧基。3种纳米纤维素薄膜中,CFR-CNF薄膜具有较高的拉伸强度(36.6 MPa),CFR-CNC薄膜具有较好的抗形变能力,并且3种薄膜均具有良好的透光性。  相似文献   

2.
本文探究了磁场对不同表面基团的纤维素纳米晶体(Cellulose Nanocrystal,CNC)薄膜光学特性的影响。以硫酸化纤维素纳米晶体(S-CNC)为原料,通过2,2,6,6-四甲基哌啶-1-氧基自由基(TEMPO)氧化制备表面带有羧基的纳米纤维素(T-CNC),并采用傅里叶红外光谱、扫描电子显微镜和Zeta电位对其基本结构进行表征。并在无磁场、垂直磁场、倾斜磁场、水平磁场四种模式下观察磁场对不同表面电荷CNC薄膜的影响。结果表明,T-CNC表面带有羧基,S-CNC表面带有硫酸酯基。由于表面电荷不同,使得T-CNC电位绝对值低于S-CNC。两种CNC由于表面电荷差异表现出不同的自组装模式,其中T-CNC为同心自组装,S-CNC为手性向列自组装,且自组装模式的差异不因磁场而改变。但T-CNC与S-CNC在自组装过程中的排列均受到磁场影响。随着磁场取向的不同,两种薄膜的颜色因CNC的排列发生变化而受到影响,其中垂直磁场对两种CNC薄膜的影响最为显著,能使薄膜中CNC的排列更加均匀紧密,从而提升薄膜颜色的均匀性。不同表面基团CNC的自组装薄膜在不同磁场下的颜色响应研究为后续对CNC虹彩...  相似文献   

3.
纤维素纳米晶体(CNCs)具有较好的制备性能,结晶度高、机械刚度大、强度高。然而,CNCs的高分散性限制了其可纺丝性。研究表明,对纳米纤维素氧化改性可以提高和优化材料的整体性能。选择氧化的纳米纤维素获得带有羧基的区域氧化CNCs(RO-CNC),利用多硫化钠(Na2Sx)对CNCs末端区域进行氧化改性,制备了末端氧化纳米纤维素。对CNCs的形态进行表征,使用激光扫描制备的纤维素凝胶经诱导固化形成3D打印新材料。  相似文献   

4.
段林娟  段燕  马巍  李群 《中国造纸》2020,39(1):9-16
以溶解浆为原料,采用催化剂预加载Fenton氧化协同高压均质法制备微纤化纤维素(MFC)。探讨了过氧化氢用量、催化剂七水硫酸亚铁用量、反应温度和反应时间对氧化效率的影响,并对氧化后纤维的微观形貌、化学结构变化及MFC微观结构、结晶度、热稳定性进行了表征。结果表明,催化剂预加载Fenton氧化法可显著提高氧化纤维中的羧基和醛基含量,降低纤维素聚合度和Zeta电位,增大纤维之间的静电斥力,利于后续的均质处理。在浆浓25%、过氧化氢用量0.15 g/g浆、七水硫酸亚铁用量1.5 g、pH值3、反应温度45℃、反应时间120 min条件下,氧化纤维中羧基和醛基含量分别为85.43μmol/g和57.32μmol/g,聚合度为154,Zeta电位为?34.72 mV。傅里叶变换红外光谱(FT-IR)表明Fenton氧化纤维成功制备,扫描电子显微镜(SEM)、X射线衍射(XRD)、热重分析(TG)表明MFC尺寸分布比较均匀,直径在200nm左右,结晶度为81.3%,热稳定性有所降低。  相似文献   

5.
纳米纤维素晶体(NCC)可由可再生资源制备,并且具有诸多特性,近年来成为研究热点。本文应用PFI磨对竹子溶解浆预处理,用纤维素酶水解制备纳米纤维素晶体,研究了酶解时间、酶解温度、酶用量对纳米纤维素晶体产率的影响,采用正交实验优化了工艺参数。并用扫描电镜、激光粒度仪、傅里叶红外、热重对原料及NCC进行性能表征。结果表明:在酶用量8m L、酶解时间3d、酶解温度50℃的条件下,纳米纤维素晶体的产率最高,达到19.13%。PFI磨预处理及酶解均可细化纤维素,NCC的Z均粒径为375.5nm,所制备的NCC保持了原料的基本化学结构,NCC的热稳定性低于原料,但其热分解残余率增大。  相似文献   

6.
近年来,作为一种环境友好材料——纳米纤维素,其制备及在材料、食品、化工、医药等领域的应用备受人们关注,其中纳米纤维素晶体具有高长径比、高比表面积、高结晶度、高机械强度和良好的热稳定性等优良特性。在介绍纳米纤维素晶体制备方法的基础上,对源于食品加工副产物纳米纤维素晶体的理化特性(形貌、结晶度、稳定性等)及主要应用方面(作为食品包装材料增强剂、Pickering乳液稳定剂、食品配料等)进行了全面综述,并对纳米纤维素晶体研究存在的问题及今后的发展方向进行了展望。  相似文献   

7.
纳米纤维素因具有可再生、易改性以及优异的机械性能,在众多领域具有广阔的应用前景。植物来源的纳米纤维素主要包括纤维素纳米晶体和纤维素纳米纤维,本文主要介绍了以农副产品为原料的纤维素纳米化处理技术及其分类,包括制备纤维素纳米晶体的经典无机酸水解法以及有机酸水解法、低共熔溶剂法和离子液体法等新型制备方法。此外,还介绍了制备纤维素纳米纤维常用的预处理手段和制备方法,预处理方法包括以2,2,6,6-四甲基哌啶-1-氧自由基氧化为代表的氧化法预处理以及酶法预处理;制备方法包括高压均质、精细研磨、高强度超声和高压微射流等技术。最后,对现行纤维素纳米化处理技术中存在的问题进行综合分析,并探讨了其未来研究需求,以期为纳米纤维素的绿色高效生产提供理论参考。  相似文献   

8.
近年来,纤维素胶体粒子稳定的Pickering乳液因极高的界面稳定性及良好的生物相容性而受到广泛关注。本文以农业废弃玉米芯为原材料,采用气爆处理从中提取纤维素,通过2,2,6,6-四甲基哌啶氧自由基氧化法对玉米芯纤维素进行精准羧基化改性,以提高纤维素的溶解性降低纤维素的粒径。通过控制氧化工艺,制备纳米球和纳米棒两种形态的氧化纤维素纳米颗粒,这两种颗粒均能提高Pickering乳液的稳定性。与纤维素原料相比,氧化纤维素纳米颗粒构成的Pickering乳液均具有更好的稳定性,可缓解脂肪的体外消化。纳米棒比纳米球延缓乳液脂肪消化的能力强,这是因为纳米棒更易在油滴表面形成网状结构而阻碍脂肪酶的靠近。本文为构建低热量的水包油Pickering乳液提供一个新的解决方案,并为农业废弃物的高值化利用提供技术支撑。  相似文献   

9.
棕榈鞘经亚硫酸盐预处理分级的方式实现了纤维束组分和薄壁细胞组分的分离,并分别经亚氯酸法去除木素。用TEMPO氧化对综纤维素进行预处理,并经高压均质得到纳米纤维素。无论是薄壁细胞,还是纤维(来自纤维束)在氧化前后的形态变化较小。氧化后薄壁细胞和纤维表面的羧基含量明显增加,且纤维氧化的羧基多于薄壁细胞氧化的羧基。由纤维制取的纳米微纤长于薄壁细胞制取的纳米微纤。棕榈鞘纤维和薄壁细胞经TEMPO氧化后的纤维素结晶度有不同程度的提高,但高压均质后测定的结晶度有所下降。棕榈鞘纤维和薄壁细胞制取的纳米微纤的热稳定性都小于其相应的综纤维素,而且,薄壁细胞纳米微纤热稳定性低于纤维束纳米微纤。  相似文献   

10.
玉米芯提取木糖后剩余的残渣富含纤维素和木质素,采用羧乙基化反应和质量分数1%的NaOH溶液分别对玉米芯渣进行预处理,再经机械解离制备了纳米纤维素,最后经棒涂法制得纳米纤维素膜,并对预处理前后玉米芯渣、纳米纤维素及其膜的化学结构、组分含量、微观形貌、尺寸分布、水接触角和热稳定性进行了分析和表征。结果表明,羧乙基化预处理可增加玉米芯渣的羧基含量,同时脱除部分木质素,而碱预处理可脱除大部分木质素。经预处理后,玉米芯渣纤维尺寸明显降低、可及度增加。经机械解离后,羧乙基化预处理所得纳米纤维素的直径更小、分布更均匀,其经棒涂法所得膜也更加致密平滑,水接触角较大。另外,两种预处理方法均降低了所得纳米纤维素膜的热稳定性。  相似文献   

11.
将纤维素纳米晶体(CNC)加入NaClO氧化体系制备氧化淀粉(OS),将氧化淀粉(OS)与聚乙烯醇(PVA)/甘油(GL)共混制备复合膜,3种物质的质量比为OS∶PVA∶GL=20∶8∶5;并对OS和复合膜的性能进行表征。结果表明,在CNC添加量为0. 5%时,OS的羧基含量最高为1. 1%;此时复合膜的透明度达到最高值0. 66,且复合膜的热稳定性最好;在CNC添加量为3. 0%时,复合膜的拉伸应力达到11. 89 MPa。  相似文献   

12.
纤维素纤维的可及度及多孔性能表征研究   总被引:3,自引:0,他引:3  
纤维素是具有多孔性结构及一定孔径分布的天然高分子材料,其中大部分微孔孔径在纳米数量级.这种特殊的结构使其在原位复合法制备磁性纳米复合材料研究中有无比的优越性和可操作性.本文采用N2吸附法、染料吸附法、保水值测定等手段表征不同原料来源的纤维素纤维的多孔性,并对丝光化和超声波预处理后纤维素纤维的比表面积、孔隙率、孔径和对液体的吸附性能的变化进行了研究.研究表明不同原料的比表面积、孔径尺寸和羧基含量均不相同,云杉纤维羧基含量较高,孔径较小,表面积较大,可作为制备磁性纳米复合纤维素纤维及磁性纸的原料.丝光化和超声波处理能进一步提高纤维素纤维的保水值和可及表面积.  相似文献   

13.
本文以玉米秸秆为原料,通过氢氧化钠预处理、TEMPO/NaBr/NaClO氧化体系氧化及高压均质制备纳米纤维素。利用光学显微镜、透射电镜、傅立叶红外光谱、X-射线衍射和热失重分析对玉米秸秆纳米纤维素的形态结构、化学结构、结晶性能和热稳定性进行表征和分析。结果表明,制备的玉米秸秆纳米纤维素直径大约为4~7nm,长度大约为200~500nm,结晶度为61.97%。玉米秸秆经碱预处理及TEMPO氧化后,半纤维素和木质素的脱除效果显著,而纤维素晶形没有发生变化。  相似文献   

14.
为实现纳米纤维素衍生物的绿色高效制备,以过硫酸铵为氧化剂,基于机械力化学作用,在微波-水热条件下氧化降解竹浆粕得到羧基化纳米纤维素(CNC),然后与二乙烯三胺发生缩合反应,实现水相中氨基化纳米纤维素(ACNC)的一锅法合成,并对其性能进行研究。结果表明:ACNC呈棒状,直径为10~40 nm,长度为50~300 nm, 氨基的接枝率为6.29%;ACNC的晶型并未发生改变,仍为纤维素Ⅰ型,结晶度由竹浆粕的59%增加到79%;ACNC的热稳定性较竹浆粕并未显著下降,但较CNC显著提高,说明CNC表面接枝氨基后热稳定性能得到改善;该制备方法绿色高效,得到的纤维素衍生物有望在生物固化和物理性能增强方面发挥作用。  相似文献   

15.
为实现工业大麻秆的高附加值利用,本研究以工业大麻秆为原料,通过测定化学组分,表明其高纤维素含量(41.45%)的基本特性,证实其制备纳米纤维素的可能性。采用TEMPO-NaBr-NaClO催化氧化体系配合超声制备了氧化纳米纤维素(TCNF),并研究其在制备过程中各阶段的形貌、化学结构、结晶度及热稳定性。结果表明,以工业大麻秆为原料制备的TCNF,其直径均匀分布在3~6 nm,保留了纤维素典型的Ⅰ型结构,结晶度为50.8%,具有较好的热稳定性。  相似文献   

16.
纳米纤维素制备方法的研究现状   总被引:5,自引:2,他引:3       下载免费PDF全文
纳米纤维素由于其生物可降解性、低密度、高机械性能和可再生性而受到广泛关注。本文主要介绍了由木材或农业/林业剩余物生产的纳米纤维素的分类及制备方法,包括制备纤维素纳米晶体的无机酸水解法和酶水解法以及有机酸水解法、固体酸水解法、离子液体法、低共熔溶剂法和美国高附加值制浆法(American value added pulping,AVAP)等新型制备方法,同时介绍了制备纤维素纳米纤丝常用的预处理法和后续机械处理法,其中预处理法主要包括氧化、酶、有机酸、高碘酸盐氧化、低共熔溶剂、离子液体和溶剂辅助等多种预处理手段。最后分析了纳米纤维素的制备方法中亟待解决的问题,并展望了纳米纤维素的广阔应用前景。  相似文献   

17.
纳米纤维素晶体的制备方法及其在制浆造纸中的应用前景   总被引:8,自引:0,他引:8  
阐述了纳米纤维素晶体的两种制备方法:无机酸水解法和纤维素酶水解法,简要介绍了它的性质,包括形状及尺寸分布、结晶度、强度、热稳定性、触变性与流变性等。总结了其在制浆造纸以及纳米复合材料中的应用情况。  相似文献   

18.
摘要:通过硫酸水解法由棉纤维制备纤维素纳米晶,再采用原位化学氧化法,在纤维素纳米晶表面进行吡咯的原位聚合,成功制得包裹聚吡咯的纤维素纳米晶复合导电材料。产物的相貌、结构和性能的研究表明:聚吡咯-纤维素纳米晶复合导电材料表现出核壳结构,纤维素纳米晶与聚吡咯间存在着较强的相互作用有利于聚吡咯均匀地包覆纤维素纳米晶;有机掺杂剂DBSNa由于分子体积大,降低了分子间作用力,其电导率不如无机掺杂剂NaCl,但是热稳定性和比电容好于NaCl,并且显著提高了复合体系的电化学容量,做为超级电容器具有良好的应用前景。  相似文献   

19.
以卡伯值不同的2种未漂硫酸盐竹浆(卡伯值为25.5和11.7的竹浆分别标记为SHK和SLK)为原料,通过TEMPO/NaBr/NaClO体系氧化及高压均质处理,制备了TEMPO氧化纳米纤维素(TOCN),并利用抽滤法制备TOCN膜。系统地研究了2种竹浆的TEMPO氧化过程、TEMPO氧化浆性能、TOCN性能及TOCN膜的力学性能等,探讨了木素对竹浆TEMPO氧化过程和TOCN制备的影响。结果表明,SHK的TEMPO氧化速率高于SLK,但SLK-TEMPO氧化浆的羧基含量达到1.01 mmol/g,高于SHK-TEMPO氧化浆的羧基含量(0.89 mmol/g)。2种TOCN形态结构差异不大,均呈纤丝状结构,直径约为5~8 nm,长径比>100,且均保持纤维素I的晶型结构;SLK-TOCN的结晶度和悬浮液的透光度均略高于SHK-TOCN。2种TOCN膜均具有优良的光学性能和力学性能,SLK-TOCN膜的杨氏模量、拉伸强度及裂断伸长率分别为2.6 GPa、92 MPa和10.9%,均高于SHK-TOCN膜的2.4 GPa、90 MPa和8.7%。  相似文献   

20.
基于NaOH-Urea预处理的微纤化纤维素制备研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为开发高效制备微纤化纤维素的方法,探讨了基于氢氧化钠-尿素(NaOH-Urea)混合溶液对玉米芯微晶纤维素进行预处理后采用机械法处理的微纤化纤维素制备工艺。采用傅里叶变换红外光谱仪(FT-IR)、X射线衍射仪(XRD)、热重分析仪(TG)、场发射扫描电镜(FESEM)对制备的微纤化纤维素化学结构、结晶度、热稳定性及微观形貌进行表征。结果表明,制备的微纤化纤维素为纤维素Ⅰ型;微纤化纤维素的结晶度为604%,得率高达78%;微纤化纤维素结晶度较玉米芯微晶纤维素有所提高;制备的微纤化纤维素表现出优良的热稳定性,热降解温度达238℃;微纤化纤维素呈棒状,直径为5~20 nm,长度大于200 nm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号