首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
采用Gleeble-2000热模拟试验机对Mn18Cr18N高氮奥氏体不锈钢进行高温拉伸试验,利用扫描电镜-能谱仪对拉伸试样断口形貌及断口附近的显微组织进行观察,用Thermo-Calc软件计算试验钢的相变及析出相,研究了Mn18Cr18N高氮奥氏体不锈钢的高温力学性能。结果表明,试验钢的第Ⅰ脆性区>1200 ℃,第Ⅲ脆性区为850~950 ℃,未出现第Ⅱ脆性区,第Ⅰ脆性区的出现主要是在加热过程中试验钢由γ奥氏体向δ铁素体转变引起的,第Ⅲ脆性区的出现是因为沿晶析出M23C6、M2(C, N)等硬脆相引起的;试验钢的抗拉强度随着拉伸温度升高而降低,断面收缩率在1000~1200 ℃温度范围内逐渐增大并表现出极佳的热塑性,断面收缩率均在70%以上,温度超过1200 ℃后断面收缩率急剧下降;Mn18Cr18N高氮奥氏体不锈钢的热锻温度应选择在1000~1150 ℃之间,在此温度范围内试验钢的断面收缩率均在70%以上,并且可以避开第Ⅰ与第Ⅲ脆性区。  相似文献   

2.
王英虎  金磊 《金属热处理》2023,48(4):166-172
为了研究Y12Cr18Ni9Cu奥氏体易切削钢的高温力学性能,利用Gleeble-3500热模拟机对Y12Cr18Ni9Cu钢进行了不同温度的高温拉伸试验,并对断口形貌、抗拉强度以及断面收缩率进行了分析。结果表明,随着温度升高试验钢的高温抗拉强度逐渐降低,断面收缩率逐渐增加。试验钢的低温脆性区为800~900℃,未出现高温脆性区。低温脆性区的出现是由于材料在热变形过程中没有发生动态再结晶,并且由于硫化物与基体所能承受的变形能力不同,裂纹在硫化物与基体界面产生,最终导致脆性断裂。在1150~1250℃温度范围内,试验钢发生了动态再结晶并表现出良好的高温热塑性,Y12Cr18Ni9Cu奥氏体易切削钢的热加工温度应选择在1150~1250℃之间。  相似文献   

3.
杨吉春  高福彬  任金亮 《热加工工艺》2014,(16):102-104,111
00Cr17Mn6Ni5N奥氏体不锈钢在10 kg真空感应炉内熔炼,并在氮气气氛下加氮化铬进行N合金化。通过Gleeble-1500D热模拟试验机进行高温拉伸试验。采用扫描电镜和蔡司金相显微镜,观察断口形貌及近断口处组织。研究表明,实验钢的高温塑性较好,最佳塑性区间为1050~1150℃,在1200℃附近存在高温脆性区;从1000~1250℃热模拟拉伸断口形貌分析,实验钢的断裂方式以韧性断裂为主,在1200℃脆性区的断裂为微孔或析出物为中心的韧窝断裂。  相似文献   

4.
在Gleeble-1500热模拟试验机上进行了Nb-Ti与Nb-V复合微合金化钢的高温拉伸试验,并用Thermo-Calc软件计算了两种试验钢不同析出相的析出温度,结合断口形貌对比分析了两种钢的高温塑性特点。结果表明:根据断面收缩率的变化规律,可以将Nb-Ti与Nb-V复合微合金化钢的整个塑性温度区间分为第Ⅰ脆性区、高塑性区和第Ⅲ脆性区,其中Nb-Ti钢的塑性区间温度范围分别为1320℃~熔点,880~1320℃和715~880℃;Nb-V钢塑性区间温度范围是1310℃~熔点,905~1310℃和705~905℃。Thermo-Calc软件计算结果表明钛元素对Al N的析出有较强的抑制作用,同时也抑制了微细Nb(C,N)的析出,能够改善含铌微合金钢的高温塑性;Nb-V钢第Ⅲ脆性区温度范围较Nb-Ti钢更宽,整体断面收缩率更差。  相似文献   

5.
通过用Gleeble-3500热机械模拟试验机对化学成分(质量分数,%)为:C 0.07,Si 0.05,Mn 1.8,Al 0.03,Ti 0.02,Cu 0.3,Cr 0.5,Nb 0.015,Ni 0.17的A钢的高温力学性能展开研究,以0.001s-1应变速率,在温度范围650 ~1 350 ℃之间做一组高温拉伸试验,测得抗拉强度和断面收缩率.结果表明:A钢整体呈现较好的塑性,塑性低谷区温度范围较小.在775~1 250℃之间,断面收缩率均高于70%,塑性良好,第Ⅲ脆性区在650~775℃之间,A钢在700~750℃存在明显的塑性低谷.第Ⅲ脆性区断裂主要为沿晶脆性断裂,这主要是由于铁素体沿奥氏体晶界析出所致.实际连铸生产过程中可以避开此脆性区间,矫直温度尽量高于800℃.  相似文献   

6.
研究了Cu对00Cr25Ni7Mo4N双相不锈钢组织、力学性能、高温热塑性的影响.结果表明,Cu是非常弱的奥氏体形成元素,对扩大奥氏体相区没有明显的作用;加入1.5% 的Cu,可使00Cr25Ni7Mo4N钢固溶处理后的强度增加,冲击韧性降低,并降低了在900~1100℃固溶处理钢的断面收缩率,而在1150~1250℃温度范围固溶处理,两种钢的断面收缩率相近,均大于60%,热塑性较好.  相似文献   

7.
通过热模拟试验研究了不同试验温度下,氮质量分数分别为0.07%、0.34%、0.44%和0.72%的18Mn18Cr N钢的断面收缩率和抗拉强度等力学性能。结果表明:(1)18Mn18Cr N钢的断面收缩率随着试验温度的升高而增大,但当温度高于1 200℃时,略有下降;(2)氮含量增加,钢具有高塑性的温度区变窄,氮质量分数为0.72%的钢,其具有最佳力学性能的温度区缩小至1 150~1 200℃;(3)随着试验温度的升高,18Mn18Cr N钢的抗拉强度均呈线性下降的趋势,且氮含量越高,其高温抗拉强度对温度的变化越敏感;(4)氮含量增加,18Mn18Cr N钢的断面收缩率呈"V"形趋势变化。  相似文献   

8.
首先对Cr18Ni10Ti不锈钢进行1050℃固溶处理及650℃时效24 h处理,随后在不同温度(500 ~ 800℃)下以1.43×10-4 s-1拉伸速率对其进行高温拉伸试验.采用扫描电镜与能谱仪分析了试验钢的组织、析出相及断口形貌,采用高分辨透射电镜观察其位错和晶界处的P和S元素的浓度.结果 表明:Cr18Ni10Ti不锈钢的组织主要是奥氏体组织,基体中有富Cr析出相及AlMgTiO复合析出相.当拉伸温度从500℃升高到800℃时,试验钢的屈服强度、抗拉强度均减小,断面收缩率先减小后增大,在650℃拉伸时,断面收缩率最小.当拉伸温度较低时,试验钢出现明显的颈缩现象,随拉伸温度升高,拉伸过程中的颈缩现象不明显,出现韧窝与沿晶混合断口.当拉伸温度升高到800℃时,试验钢发生蠕变断裂,出现冰糖状断口.第二相、拉伸过程的回复与再结晶、P和S元素的晶界偏聚行为以及晶界蠕变等多种因素的影响使得Cr18Ni10Ti不锈钢在500~800℃拉伸时出现不同的强度与断面收缩率.  相似文献   

9.
通过Gleeble-3500热模拟试验机研究了不同应变速率下V-N微合金化Q420B钢连铸坯的高温热塑性,利用扫描电镜观察高塑性区和第Ⅲ脆性温度区拉伸试样的断口形貌及断口处组织形貌,分析了试验钢在高温下的强度和塑性随温度变化的关系,动态再结晶、相变和析出物对高温热塑性的影响。结果表明:在应变速率为ε觶=5×10-3/s时,存在第Ⅲ脆性区(700~900℃),在1000℃时断面收缩率(RA)达到最大值92.16%;当应变速率为ε觶=5×10-2/s时,存在第Ⅲ脆性区(600~862℃),在1100℃时RA达到最大值90.39%;当应变速率为ε觶=5×10-1/s时,不存在塑性凹槽;3个应变速率下均没有出现第Ⅱ脆性区;在第Ⅲ脆性区,随着应变速率的增大,断面收缩率提高;在1000~1200℃出现高塑性的主要原因是发生了动态再结晶;第Ⅲ脆性区塑性低主要是由于晶界处有析出物和夹杂物,同时也是由于沿奥氏体晶界析出的铁素体抗拉强度低。  相似文献   

10.
通过对高氮低镍奥氏体不锈钢(0Cr25Ni2Mn17Mo1NbN)进行1100℃固溶处理,水冷,利用万能拉伸试验机测试其力学性能并和316L奥氏体不锈钢进行对比。将高氮低镍奥氏体不锈钢在不同温度(700、750、800℃)时效2 h,利用光学显微镜和洛氏硬度计,观察不同温度下时效2 h试验钢的析出状况和试验钢的硬度,利用扫描电镜、透射电镜来观察和分析试验钢800℃析出物的形貌及种类。试验结果表明,高氮低镍奥氏体不锈钢在1100℃固溶处理后有良好的力学性能,高氮低镍奥氏体不锈钢在800℃大量析出相为σ相,其次是Cr2N,伴有少量Cr23C6析出,还有微量Nb(C,N)析出。析出相形态有胞状、短棒状和片状布满整个基体。试验钢时效后的硬度值要比时效前(固溶态)的硬度值高,且试样随时效温度升高其硬度值呈现上升趋势。  相似文献   

11.
运用Gleeble-3800热模拟试验机研究了00Cr22Ni13Mn5Mo2N奥氏体不锈钢在变形温度为1000~1200 ℃,变形量为50%、60%、70%,应变速率为0.05 s-1条件下的热压缩变形行为,并观察分析变形后试样组织形貌和经1080 ℃固溶热处理后试样的组织形貌。观察试样固溶热处理前后的组织形貌得到在1000~1150 ℃下进行热压缩变形,随着变形量的增加,动态再结晶越完全;经过固溶热处理后,静态再结晶就越充分。但在1200 ℃时,温度过高,再结晶已完成并且晶粒发生长大。在变形量分别为50%、60%和70%时,随着变形温度的升高,再结晶越完全,经固溶热处理后,再结晶更完全。00Cr22Ni13Mn5Mo2N奥氏体不锈钢热轧最佳轧制温度为1100 ℃,压缩变形量为70%。  相似文献   

12.
为了研究Nb对00Cr21Ni6Mn9N不锈钢固溶后显微组织和耐晶间腐蚀性能的影响,分别在950、1000、1050、1100、1150和1200 ℃对含Nb量(质量分数,下同)为0.057%和不含Nb的00Cr21Ni6Mn9N不锈钢进行1 h固溶处理,并观察其微观组织。结果表明,固溶温度在950~1200 ℃时,00Cr21Ni6Mn9N不锈钢的晶粒尺寸随着固溶温度的升高而增大,Nb的加入促进00Cr21Ni6Mn9N不锈钢中混晶组织的出现,提高其完全再结晶温度。不含Nb的试验钢在1000 ℃以上固溶后即可获得晶粒大小均匀的组织,而含0.057%Nb的试验钢则需要在1100 ℃以上才可以获得均匀组织,且其尺寸略大于无Nb钢在1000 ℃时完全再结晶的晶粒。随着固溶温度的升高和晶粒尺寸的长大,析出的Z相含量降低,晶粒界面能减小,在1150 ℃和1200 ℃固溶1 h后,Nb对晶粒的细化作用和温度升高造成的晶粒长大程度变得不再明显。两种成分的钢均具有较低的晶间腐蚀敏感性,含Nb量为0.057%的00Cr21Ni6Mn9N不锈钢其再活化率Ra值较不含Nb的钢进一步降低。  相似文献   

13.
为了研究00Cr22Ni13Mn5Mo2N奥氏体不锈钢的精轧工艺,使用Gleeble-3800热模拟试验机模拟00Cr22Ni13Mn5Mo2N奥氏体不锈钢在变形温度为800、850、900、950 ℃,变形量为40%、50%、60%,应变速率为50 s-1条件下的热压缩变形行为,并对其进行1080、1120、1160 ℃的固溶热处理,观察固溶热处理前后的组织形貌。结果表明:在800~950 ℃热压缩温度下,随变形量增大,再结晶越完全,再结晶平均晶粒尺寸越细小;经固溶处理1 h后,静态再结晶就越充分。在40%~60%变形量下,随热压缩温度升高,再结晶越完全,再结晶平均晶粒尺寸越大。热压缩变形试验钢随固溶处理温度升高,再结晶平均晶粒尺寸越大。00Cr22Ni13Mn5Mo2N奥氏体不锈钢的精轧最佳轧制温度为800 ℃,压缩变形量为60%,固溶温度为1080 ℃。  相似文献   

14.
高强奥氏体不锈钢00Cr21Ni14Mo2Mn5N钢冲击试验后出现断口分层现象。利用低倍检测、扫描电镜能谱分析和金相显微镜,对金相以及冲击试样纵剖面、垂直于钢板表面的横切面进行了观察、检测和分析,指出分层现象与板厚中心偏析处的铌化物夹杂、带状组织有关。通过1150℃固溶处理,冲击断口的分层现象基本消失。  相似文献   

15.
利用热/力模拟试验机对Crl5Mn9Cu2NilN奥氏体不锈钢进行热压缩试验,在变形温度为950℃~1200℃,应变速率为0.01s-1~2.5s-1,得到其流变应力变变曲线.以经典的双曲正弦形式的模型为基础,采用线性同归分析方法建立了这种钢的热变形本构方程,其中热变形激活能为488.16kJ/mol.与Ni-Cr奥氏体不锈钢相比,由于这种钢具有较高Mn含量,热变形激活能相埘较高.通过压缩试样热变形后的显微组织观察发现,这种钢在温度为1000℃变形时,冉结晶开始发生,1100℃以上时,可获得完全再结晶组织.  相似文献   

16.
00Cr22Ni5Mo3N双相不锈钢热加工性能的试验研究   总被引:10,自引:0,他引:10  
舒先进  张淑琴  宋志刚 《钢管》2004,33(6):15-19
采用热压缩和热拉伸试验方法,对00Cr22Ni5Mo3N双相不锈钢的高温变形抗力、高温塑性以及在高温变形时的奥氏体相的数量进行了研究。试验结果表明,00Cr22Ni5Mo3N双相不锈钢的高温变形抗力和高温塑性较0Cr18Ni10Ti奥氏体不锈钢低,在1100~1250℃变形时,钢中奥氏体相的数量可以控制在适合热加工的范围,使钢具有较好的热加工性能。  相似文献   

17.
利用Gleeble-3800热模拟试验机得到17Cr2Ni2MoVNb和20Cr2Ni4A齿轮钢在1000~1150 ℃、0.01~10 s-1的流变应力曲线,构建了两种钢的动态再结晶Avrami动力学模型和热加工图。结果表明,两种钢在高变形温度、低应变速率下易发生动态再结晶。17Cr2Ni2MoVNb钢中较高的Nb和Mo含量对动态再结晶的抑制作用大于20Cr2Ni4A钢中的高Ni含量的影响,导致在相同的热变形条件下17Cr2Ni2MoVNb钢的动态再结晶体积分数小于20Cr2Ni4A钢。17Cr2Ni2MoVNb钢的最佳热加工工艺参数为:温度为1050~1150 ℃、应变速率为0.1~0.6 s-1;20Cr2Ni4A钢的最佳加工参数为:温度为1100~1150 ℃、应变速率为3.3~5.5 s-1。  相似文献   

18.
通过热拉伸、热压缩试验研究了不同氮含量的022Cr25Ni7Mo3N双相不锈钢的热加工行为和软化机制。结果表明,试验钢高温抗拉强度随N含量增加而提高,该影响关系在较低变形温度区间尤为明显;在1100℃平面压缩达到稳态流变之后,试验钢的流变应力很快再次上升,出现二次硬化现象,N含量提高致使试验钢在更低的应变条件下更快地进入二次硬化阶段;试验钢高温变形过程中的应变主要传导到高温更软的铁素体相中,该相积蓄的较大应变能促进了铁素体的动态再结晶启动;022Cr25Ni7Mo3N双相不锈钢的软化机制主要是铁素体的动态回复和动态连续再结晶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号