首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
采用扫描电镜、透射电镜等研究了低合金耐磨钢经低温回火、循环热处理、一步配分热处理后的显微组织,采用磨粒磨损试验机测试其磨损质量.结果表明:试验钢经低温回火后的组织为板条马氏体加少量析出相;循环热处理的试验钢的马氏体板条消失,在原奥氏体晶界上和基体处均有碳化物析出相;淬火配分热处理的试验钢中的马氏体板条比较明显,并有少量的残留奥氏体.能谱成分分析可知,不同热处理工艺后试验钢中的微米尺寸的析出相主要是(Ti,Nb)C,球形与椭球形纳米尺寸析出相是(Ti,Nb,V,Mo)C.淬火加200℃低温回火处理的试验钢的硬度为46.5 HRC,循环热处理的试验钢的硬度最低,为31.48 HRC,淬火加一步配分热处理的试验钢的硬度为44.84 HRC.磨粒磨损实验结果表明,淬火加200℃低温回火处理后的试验钢的耐磨损性最佳,淬火加配分处理的试验钢的磨粒磨损性能与淬火加低温回火的试验钢相差不大,循环热处理的试验钢的磨粒磨损性能较差.  相似文献   

2.
朱震宇  吴志方  吴润 《金属热处理》2022,47(10):154-159
采用光学显微镜(OM)、扫描电镜(SEM)和材料表面综合性能测试仪等研究了回火温度对NM500低合金高强度耐磨钢的显微组织、力学性能和耐磨性能的影响。结果表明,NM500钢经淬火+回火处理后得到典型的回火马氏体组织,回火温度的升高使得固溶在马氏体板条中的过饱和碳原子逐渐析出,而碳化物聚集长大导致钢的硬度和低温冲击性能明显下降。NM500钢在200 ℃回火后的硬度和-20 ℃低温冲击吸收能量分别为513 HBW和44.40 J,耐磨性能最佳。低温回火(200、250 ℃)时少量细小弥散的过饱和碳原子析出改善了钢的耐磨性,300 ℃及以上回火时聚集粗化的短棒状渗碳体会降低基体的硬度,导致钢的耐磨性不断降低,磨损机制由磨粒磨损向粘着磨损转变。  相似文献   

3.
采用真空感应炉冶炼了试验钢,并进行了不同工艺的热处理。采用光学显微镜、扫描电镜对组织进行了观察,对洛氏硬度进行了检测。结果表明,试验钢淬火组织主要为细小的板条马氏体+大量残余奥氏体+未溶析出相,经-80℃深冷处理、低温回火后残余奥氏体含量逐步减少;随着淬火温度提高,回火马氏体基体逐渐粗化,第二相粒子数量逐渐减少,尺寸也减小;1030℃淬火并深冷处理后在150℃回火,试验钢获得最高的硬度,随着回火温度提高,基体组织逐渐由回火马氏体转变为回火屈氏体再到回火索氏体,第二相粒子逐渐粗化;硬度值先几乎不变,当温度超过450℃硬度值迅速下降,650℃时降低至34HRC。  相似文献   

4.
对CW6Mo5Cr4V2(CM2)高速钢进行了不同温度的淬火和回火处理。检测了热处理后CM2钢的硬度、冲击韧性和耐磨性能。结果表明,经1 150~1 250℃淬火并于550℃回火的CM2钢的硬度随淬火温度的升高先升高后下降。1 200℃淬火、550℃3次回火的CM2钢的硬度高达65. 4 HRC,且耐磨性与冲击韧性优异。CM2钢的磨损机制为粘着磨损、氧化磨损和磨粒磨损并存。  相似文献   

5.
通过OM、SEM、TEM及EDS,研究了P92钢在不同热处理条件下的微观组织,采用洛氏硬度计测量了不同热处理状态下材料的洛氏硬度。结果表明:P92钢在1050℃淬火、正火得到的组织均是马氏体+残留奥氏体+碳化物,硬度平均值约为41.34 HRC。760℃等温退火得到组织为铁素体+珠光体,硬度平均值约为11.56 HRC。淬火后200、400、760℃回火得到的组织分别为回火马氏体,回火马氏体+回火托氏体,回火托氏体。对应的硬度平均值分别为30.90、26.92、23.75 HRC。  相似文献   

6.
常用模具材料热处理的显微组织及性能分析   总被引:1,自引:0,他引:1  
通过对T8、CrWMn、9SiCr、Cr12MoV和GCr15五种模具材料在常规热处理工艺下的力学性能比较,并利用金相、扫描电子显微镜对其显微组织和断口形貌进行分析,优化了它们的热处理工艺.结果表明,这五种材料热处理后的断口形貌均为解理或准解理脆性断裂,组织结构为回火马氏体、残余奥氏体和碳化物.且Cr12MoV经1010℃淬火、200℃回火后的硬度为63HRC;T8钢经785℃淬火、200℃回火后的硬度为61HRC:CrWMn经835℃淬火、200℃回火后的硬度为60.2HRC;9SiC经865℃淬火、200℃回火后的硬度为61HRC:GCr15钢在835℃淬火200℃回火后的硬度为61.5HRC.  相似文献   

7.
运用扫描电子显微镜和洛氏硬度计研究了Cr5支承辊用钢不同热处理状态下的显微组织和洛氏硬度。结果表明,调质处理后Cr5钢组织得到明显改善(回火索氏体),细小弥散分布的碳化物取代尺寸较大不规则的碳化物;淬火后试样组织为马氏体,碳化物几乎全部溶入基体,硬度随淬火温度提高而增加(由51.6 HRC增加到58.1 HRC);回火后,Cr5钢中有细小碳化物析出,且弥散分布,淬火温度较高(1050℃、1025℃)时,组织依然保留马氏体结构(回火马氏体),温度较低(1000℃)时,组织为回火索氏体,其硬度与回火前变化趋势相同(由51.4 HRC增加到54.4 HRC)。在所选定的淬火温度下,随着淬火温度的升高,硬度值增大,磨损量减小,磨损严重程度降低,耐磨性较好。  相似文献   

8.
对经淬火+回火后的P92钢进行650 ℃不同时间时效处理。利用光学显微镜、扫描电子显微镜、透射电子显微镜对淬火和不同时间时效处理试样进行组织及析出相观察及分析;采用洛氏硬度计对其进行硬度测试。结果表明,P92钢淬火组织为板条马氏体+残留奥氏体+M23C6+MC。经不同时间时效处理后的基体组织均为回火托氏体,同时存在有M3C、MC、M23C6等碳化物。时效150 h时Laves相开始析出,且随着时效时间延长,析出物尺寸增大,P92钢的硬度不断降低。时效初始硬度约为24 HRC,时效250 h后硬度约为20 HRC。  相似文献   

9.
采用扫描电镜、透射电镜和洛氏硬度计等研究了一种含6%Al、1.4%C的超高碳钢(UHCS-6Al)淬火+冷处理+回火后的组织和硬度变化。结果表明:超高碳钢(UHCS-6Al)淬火+冷处理+回火后组织为马氏体组织,峰值硬度高达65.3 HRC;回火时,基体中析出了ε碳化物,析出强化作用显著,而钢中高的Al含量通过抑制ε碳化物向渗碳体转变,显著提高了ε碳化物的稳定性,使试验钢具有优良的回火抗温性能。在200~400℃之间回火时,随回火温度提高,可以保持高的硬度(63 HRC)不变,即使480℃回火2 h后硬度仍有59 HRC。  相似文献   

10.
通过显微组织分析、硬度测试、摩擦磨损性能测试以及磨损形貌观察,研究了不同热处理工艺对718钢的组织、硬度及干摩擦磨损性能的影响。结果表明,热处理工艺对718钢的显微组织、洛氏硬度及干摩擦磨损性能有显著影响。与热轧态718钢相比,经860℃油淬+200℃回火处理后,718钢的硬度提高显著,其硬度可达49.5 HRC,其显微组织为回火马氏体+少量粒状碳化物。718钢经860℃油淬+200℃回火处理后,磨损量和平均摩擦因数最小,表现出优异的干摩擦磨损性能。  相似文献   

11.
渗碳淬回火工艺对G20CrNi2Mo钢组织与性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
付明  王智勇 《金属热处理》2020,45(4):166-170
以G20CrNi2Mo渗碳轴承钢为研究对象,通过扫描电镜及光学显微镜分析不同热处理工艺下的组织及硬度差异,并借助摩擦磨损试验机研究其耐磨性能的变化。结果表明,G20CrNi2Mo轴承钢渗碳后经过不同淬火及回火工艺,其硬度和耐磨性能均有了明显提高,其中,二次淬火后的组织为细小的马氏体和均匀细小的颗粒碳化物,以及少量的残留奥氏体;二次淬火后经过回火处理,200 ℃低温回火的组织性能最优,组织为回火马氏体,其硬度值为62.3 HRC,磨损量为12.9 g。  相似文献   

12.
对40CrNi2Mo钢进行200~575℃回火处理,采用X射线衍射仪(XRD)、扫描电镜(SEM)、激光共聚焦扫描显微镜、维氏硬度计、万能试验机和磨损试验机等研究了回火处理后40CrNi2Mo钢微观组织演化对其力学性能和干摩擦性能的影响。结果表明:随着回火温度的升高,40CrNi2Mo钢板条马氏体中固溶的过饱和C原子逐渐析出,微观组织逐渐向粗大的铁素体、球化渗碳体和粗化的碳化物转变;压缩屈服强度、弯曲强度和硬度降低;325℃和425℃回火处理后析出层状渗碳体导致40CrNi2Mo钢的加工硬化能力和冲击韧性先下降后升高;硬度降低导致耐磨性降低,磨损机制由磨粒磨损逐渐向氧化剥层磨损转变。  相似文献   

13.
对一种新型高级别低合金高强度耐磨钢NM600进行热处理实验,研究了淬火温度和回火温度对实验钢组织和力学性能的影响,并分析了最优工艺条件下实验钢的磨损性能。结果表明:当淬火温度为880 ℃,回火温度为180 ℃时,实验钢力学性能最优,其中维氏硬度、抗拉强度、伸长率和-40 ℃冲击功分别为628 HV、2 000 MPa、7.3%、27.8 J,实验钢组织为典型的板条马氏体结构,马氏体板条内部及其板条界面上分布着细小均匀的碳化物。三体冲击磨损实验结果表明:工艺优化后的实验钢的耐磨性能与瑞典SSAB公司生产的HARDOX600相近,是NM400钢的1.376倍,抗磨损性能良好。  相似文献   

14.
研究了碳含量分别为0.31%、0.38%和0.50%的低合金耐磨铸钢热处理后的组织、强韧性及不同磨损条件下的磨损性能。结果表明,试验钢经950℃淬火及250℃回火,显微组织均以板条马氏体为主,随含碳量的增加,组织有所粗化,并且有片状马氏体出现。试验钢的硬度随碳含量的增加而增加,但韧性下降。磨损试验结果表明,冲击磨料磨损条件下,主要表现为凿削磨损,碳含量为0.38%的试验钢具有较好的耐磨性;静磨料磨损条件下,主要表现为切削磨损,耐磨性主要受硬度的影响,碳含量为0.50%试验钢具有较好的耐磨性。  相似文献   

15.
中锰奥氏体基耐磨钢中马氏体的应用   总被引:2,自引:1,他引:1  
合理设计了中锰奥氏体基耐磨钢的成分,并选择合适的水韧处理工艺来获得一种介稳的单相奥氏体,在此组织基础上进行不同的等温热重申2工艺岖得一定量的马氏体,以提高基体的初始硬度,又不恶化其冲击韧度。再通过与高锰钢(Mn13)在同等工况条件下进行耐磨性模拟对比试验,来选择适合中锰钢中、低冲击磨料磨损条件下使用的热处理工艺和组织,同时对试样进行金相组织观察及力学性能测试。  相似文献   

16.
采用扫描电镜、力学性能试验机和腐蚀磨损试验机研究了热处理工艺对Cr15Ni2MnMoCuNbRE铸钢组织、力学性能和耐腐蚀磨损性能的影响。结果表明,试验钢经860 ℃处理后的组织为奥氏体+晶界网状碳化物,热处理加热温度升高,试验钢的组织和性能均得到不同程度的改善。当加热温度从860 ℃升至1000 ℃后,试验钢组织中晶界碳化物减少,形态改善,碳化物由晶界网状转变为细棒状,力学性能和耐腐蚀磨损性能显著提高。与加热温度860 ℃处理的试验钢相比,加热温度为1000 ℃处理的试验钢,其硬度和冲击吸收能量分别提高了5.9%和49.8%,达到了57.5 HRC和35.5 J,耐腐蚀磨损性能提高了1.88倍。  相似文献   

17.
采用液-固复合的方法制备铸态复合耐磨试验钢,且分别进行等温淬火和淬火-回火处理,利用扫描电镜、硬度计及冲击性能测试研究了不同的热处理对高铬高碳钢/碳钢复合铸造耐磨钢组织和性能的影响。利用JMatPro软件对试验钢不同温度下平衡相种类与含量进行了计算。结果表明,铸态高铬高碳钢/碳钢复合材料耐磨层的微观组织由网状碳化物和粒状珠光体组成;基体层为由粗大的奥氏体在较快冷速下形成的魏氏组织。等温淬火后试验钢耐磨层形成了网状碳化物+细粒状碳化物+奥氏体+铁素体的微观组织,基体层形成了块状铁素体与珠光体的微观组织;淬火-回火后试验钢耐磨层形成了网状碳化物+细粒状碳化物+马氏体的微观组织,基体层形成马氏体+上贝氏体的微观组织。经过等温淬火的试验钢耐磨层硬度为493 HBW,冲击吸收能量为2.6 J,基体层冲击吸收能量为79.2 J;经过淬火-回火的耐磨层硬度为629 HBW,冲击吸收能量为1.6 J,基体层的冲击吸收能量为20.0 J。考虑复合耐磨钢需要抵抗较高冲击载荷,880 ℃保温2 h空冷至320 ℃保温5.5 h的等温淬火为更优的热处理工艺。  相似文献   

18.
将17-4PH不锈钢锻棒固溶处理后油冷,然后选择在最佳的时效温度480 ℃时效保温0~5 h后空冷。通过光学显微镜(OM)、超景深显微镜、XRD、显微硬度仪等测试方法观察固溶、时效过程的组织演变和分析其沉淀硬化机理;采用电阻仪间接测试ε-Cu相动态时效析出过程对电阻的影响;并利用摩擦磨损试验机测试其耐磨性能。研究发现:17-4PH不锈钢固溶和时效过程没有残留奥氏体和逆转变奥氏体出现,热处理后出现板条状和块状两种马氏体形态,板条状马氏体硬度高于块状马氏体,随着时效时间的延长,两种马氏体硬度同步上升,时效析出明显提高了固溶态组织的硬度;时效2.0~2.5 h附近强化效果和耐磨性能最弱,可能与ε-Cu 相长大及与位错交互作用有关;硬度随时效时间的变化趋势与电阻正好相反。  相似文献   

19.
拟以淬火-配分的新型热处理工艺替代冷变形加工硬化工艺,进而提高亚稳态奥氏体不锈钢的力学性能。以301不锈钢为研究对象,采用光学显微镜、扫描电镜、X射线衍射仪、铁素体测量仪、万能试验机及显微硬度计等表征手段,分析了不同配分热处理制度对301不锈钢微观组织及力学性能的影响。结果表明:301亚稳态奥氏体不锈钢经不同淬火-配分工艺热处理后,其显微组织主要由板条状马氏体、奥氏体以及微量碳化物组成;其力学性能对配分温度不够敏感,但随配分时间的延长会不断优化。在450 ℃配分30 min后,301奥氏体不锈钢的综合力学性能达到最优,其屈服强度、抗拉强度、伸长率及硬度分别为432.37 MPa、1212 MPa、44.28%及193.16 HV0.2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号