首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以聚乙烯吡咯烷酮(polyvinyl pyrrolidone, PVP)包覆纳米Fe3O4(以Fe3O4@PVP表示,下同)作为U(Ⅵ)吸附剂,开展了pH值、初始铀浓度、吸附温度、离子强度、吸附时间等因素对吸附U(Ⅵ)的影响研究,同时进行了吸附等温线、吸附动力学、吸附热力学与循环利用研究。结果表明,在pH=6.00、温度为20~40℃时,Fe3O4@PVP吸附U(Ⅵ)达到平衡的时间为5~60 min,单次铀吸附率均大于75%。该吸附过程符合准二级吸附动力学模型,温度为20~40℃时,准二级吸附速率常数为0.000 646~0.012 500 g/(mg·min);该过程符合Redlich-Peterson与Langmuir等温线模型,根据Langmuir等温线预估20~40℃时Fe3O4@PVP吸附U(Ⅵ)的饱和吸附容量为185.8~291.0 mg/g。此吸附过程是一个吸热过程(标准吸附焓变ΔH?  相似文献   

2.
通过水热法制备了磁性MOFs材料Fe3O4@SiO2@UiO-66-SO3H,并利用红外光谱仪(FT-IR)、X射线衍射仪(XRD)、比表面积测试(BET)、振动样品磁强计(VSM)、X射线光电子能谱仪(XPS)等对材料结构、形貌和性能进行表征。考察了溶液pH值、时间、温度、Co(Ⅱ)初始浓度对Fe3O4@SiO2@UiO-66-SO3H吸附性能的影响。结果表明,在pH=8.3、温度为298 K下,Fe3O4@SiO2@UiO-66-SO3H对Co(Ⅱ)的理论最大吸附量为106 mg/g;吸附过程符合准二级动力学模型和Langmuir等温模型,吸附是一个自发的吸热过程。Fe3O4@SiO2@UiO-66-SO3H在外加磁场下易从水溶液中分离,5次循环后仍具有较强的吸附性能。  相似文献   

3.
合成了一种新型的、具有高吸附量和机械强度且易于分离的双偕胺肟基聚合物/Fe3O4@SiO2吸附剂,通过静态吸附实验,研究了pH值、固液比、吸附时间、溶液初始浓度等因素对吸附剂吸附铀的影响,并探讨了吸附过程的热力学和动力学。结果表明,吸附剂对铀的吸附量随吸附剂用量、吸附时间及铀酰离子初始浓度的增加而增加,但当这些因素达到一定值时,吸附达到平衡。最佳吸附条件为:pH=5、固液比为0.6 g/L、吸附时间为90 min、铀溶液初始浓度为100 mg/L,在此条件下其饱和吸附量可达到160 mg/g。吸附剂对铀的吸附遵循Langmuir等温吸附线,符合准二级动力学方程。  相似文献   

4.
以高锰酸钾/浓硫酸氧化法轴向切割多壁碳纳米管(MWCNTs)所制备的氧化石墨烯纳米带(GONRs)为原料,采用水热法制备了一种便于固液分离的功能性四氧化三铁/GONRs复合材料(MGONRs),对其进行了SEM、FT-IR、XRD等表征,并考察了其对U(Ⅵ)的吸附性能。探讨了溶液pH值、MGONRs用量、铀初始浓度、吸附时间和温度对MGONRs吸附U(Ⅵ)的影响。结果表明:MGONRs对U(Ⅵ)的吸附过程是与pH值和时间相关的自发的吸热过程;吸附符合准二级动力学模型和Langmuir模型,MGONRs对U(Ⅵ)的吸附量可达123.2 mg/g,且具有良好的再生性能,有望用于从放射性废水中分离和回收铀。  相似文献   

5.
以壳聚糖(CTS)和生物炭(AC)为原料,采用原位沉淀法制备了壳聚糖-生物炭(CTS-AC)复合材料,研究了吸附时间、铀初始浓度、初始pH值、温度和干扰离子等因素对CTS-AC吸附U(Ⅵ)的影响,探讨了CTS-AC对U(Ⅵ)的吸附动力学、等温线,采用傅里叶红外光谱(FT-IR)、X射线衍射(XRD)、扫描电镜(SEM-EDS)及比表面积分析(BET)等手段进行了相关机理分析。实验结果表明,CTS-AC吸附U(Ⅵ)的最佳条件为:pH=4、CTS-AC投加量0.8~1 g/L、吸附时间240 min,在此条件下,最大吸附率可达94.85%。CTS-AC对U(Ⅵ)的吸附等温线模型符合Langmuir模型,U(Ⅵ)的吸附动力学符合准二级模型;高浓度Cu2+对CTS-AC吸附U(Ⅵ)的抑制作用明显;FT-IR、XRD和EDS结果表明,CTS的负载未改变AC的原结构,仅增大了其孔径、增加了结合位点。CTS-AC对U(Ⅵ)的吸附机制为配位作用以及离子交换。  相似文献   

6.
18-冠-6/LA/Fe3O4复合磁性纳米粒子的制备及其吸附性能研究   总被引:1,自引:0,他引:1  
Fe3O4磁性纳米粒子(MNPs)比表面积大、吸附能力强,且在外磁场作用下易于液固分离,冠醚具有对铀酰离子选择性配位的能力。本研究制备了兼具两者特点和优势的18-冠-6/LA/Fe3O4复合磁性纳米粒子。其结构经红外(IR)、扫描电镜-X射线能谱(SEX/EDX)、振动样品磁强计(VSM)、热综合分析仪(TGA)进行表征,表明18-冠-6/LA/Fe3O4复合磁性纳米粒子的粒径为12~23 nm,饱和磁化强度为56.34 emu/g。用制得的复合磁性纳米粒子对溶液中铀酰离子进行初步吸附实验,在选定的条件下,平衡吸附率达95%,操作方法快速简便,吸附后的磁粒子可方便地进行富集和回收。  相似文献   

7.
采用高温熔盐电解法合成了MoS2,为了提高MoS2对铀的吸附性能,以MoS2为基底复合Mn2O3。MoS2的片层结构有效地分散了Mn2O3的团聚,同时引进了亲铀氧基团。采用电子扫描显微镜及能谱(SEM & EDS)、X射线衍射仪(XRD)、Zeta电位仪等对Mn2O3@MoS2复合材料进行了表征,表征结果表明,高温结晶合成的Mn2O3@MoS2复合材料具有完整的微观形貌和稳定的晶体结构。通过静态吸附批实验探究了在不同变量下Mn2O3、MoS2和Mn2O3@MoS2三个材料对溶液中铀的吸附效果,结果表明,Mn2O3@MoS2的吸附性能优于Mn2O3和MoS2,在pH=5.5时,吸附平衡时间为90 min,吸附动力学遵循准二级动力学模型,吸附等温线符合Langmuir模型。Mn2O3@MoS2的单层饱和吸附容量为117.5 mg/g,在293.15~318.15 K的温度梯度中,升温有利于吸附进行。  相似文献   

8.
通过静态吸附实验,研究了用十六烷基三甲基溴化铵(HDTMA•Br)改性的蛭石对U(Ⅵ)的吸附行为,以及有机改性蛭石(吸附剂)用量、pH值、铀初始质量浓度、吸附时间等因素对有机改性蛭石吸附U(Ⅵ)效果的影响,从热力学和动力学方面对吸附过程进行了分析,并通过FT-IR和SEM探讨了其相关吸附机理。结果表明:增加吸附剂用量、延长吸附时间和降低铀初始质量浓度都能提高有机改性蛭石对铀的去除率,最佳吸附pH值为6.5左右,120 min达到吸附平衡;用絮凝剂协同吸附能提高有机改性蛭石对铀的吸附效果;有机改性蛭石对铀的吸附遵循Langmuir吸附等温线,符合准二级动力学方程。有机改性蛭石吸附铀前后的FT-IR表明,-OH、Si[CDS1]O等基团起重要作用;SEM分析表明,有机改性蛭石吸附U(Ⅵ)引起其形态结构的改变。  相似文献   

9.
采用溶胶-凝胶法合成二氧化钛(TiO2),并将苯胺聚合在TiO2表面制备了聚苯胺(PANI)/TiO2复合材料(PANI/TiO2)。使用FT-IR、TGA和XPS表征了制备的TiO2、PANI和PANI/TiO2的表面功能基团、热稳定性和表面元素组成。研究了溶液pH值、吸附时间、U(Ⅵ)浓度和温度等因素对TiO2、PANI和PANI/TiO2吸附U(Ⅵ)的影响,探讨了3种材料对U(Ⅵ)的吸附动力学、等温线和热力学性质。FT-IR、TGA和XPS表征结果表明,成功制备了PANI/TiO2复合材料。TiO2、PANI和PANI/TiO2吸附U(Ⅵ)的最佳pH值分别为5.0、4.5和5.0;吸附过程均符合Langmuir吸附等温模型和准二级吸附方程,TiO2、PANI和PANI/TiO2的单层饱和吸附量分别为11.49、22.41、43.29 mg/g;3种吸附剂对U(Ⅵ)的吸附过程均为自发的吸热过程。同时,PANI/TiO2具有较好的循环使用性能,第5次使用时,吸附量仅降低了15.4%。  相似文献   

10.
以三聚氰胺为原料、碳酸钙为辅助模板,采用热聚合法对石墨相氮化碳(g-C3N4)进行改性,制备了多孔石墨相氮化碳(PCN)材料,研究了g-C3N4改性前后对U(Ⅵ)的吸附效果,并利用SEM、BET、FT-IR、XPS等表征手段对PCN吸附U(Ⅵ)的机理进行了分析。结果表明:PCN比表面积显著增大(58.5 m2/g),约为g-C3N4的4倍;在初始pH=5、吸附时间2 h、U(Ⅵ)初始浓度10 mg/L、PCN用量0.2 g/L、温度303 K条件下,PCN对U(Ⅵ)的最大吸附量为92 mg/g;整个吸附过程符合准二级动力学方程以及Langmuir等温吸附模型;此外,升高温度有利于PCN对U(Ⅵ)的吸附。FT-IR、XPS表征结果表明,PCN中的含氮基团参与了PCN对U(Ⅵ)的吸附去除。  相似文献   

11.
制备了三聚磷酸钠交联壳聚糖/纳米Fe~0(CS-Fe)复合膜,并将其用于吸附U(Ⅵ),考察了pH值对CS-Fe复合膜吸附U(Ⅵ)的影响,以及吸附动力学和吸附等温线。结果表明,吸附等温线符合双位点Langmuir模型,以CS-Fe复合膜的磷酸基团为主要吸附位,纳米Fe~0为次要吸附位。吸附动力学符合准二级模型,表明化学吸附是控速步骤。CS-Fe复合膜对U(Ⅵ)的饱和吸附容量(208.8mg/g)远高于壳聚糖膜对U(Ⅵ)的饱和吸附容量(131.6mg/g),这是由于壳聚糖促进了纳米Fe~0的分散以及纳米Fe~0还原U(Ⅵ)的共同作用。  相似文献   

12.
通过静态吸附实验,研究了pH值、吸附时间、铀初始质量浓度、吸附剂用量等因素对凹凸棒石及凹凸棒石与硫酸亚铁协同吸附铀的影响,从热力学和动力学方面对吸附过程进行了分析,并通过红外光谱(IR)和扫描电镜(SEM)探讨了其吸附机理。结果表明,当温度为25 ℃、pH值为5.0、凹凸棒石投加量为15 g/L、铀初始质量浓度为100 mg/L、吸附反应30 min时,凹凸棒石对UO2+2的吸附率达89.5%,饱和吸附量可达40.8 mg/g以上;加硫酸亚铁后,凹凸棒石和硫酸亚铁协同吸附铀的效果大幅提高,在25 ℃、pH值为6.5、凹凸棒石用量20 g/L、FeSO4用量1 g/L、铀初始质量浓度为100 mg/L、吸附时间30 min时,凹凸棒石和硫酸亚铁协同对UO2+2的吸附率达99.9%以上,经处理的含铀废水能达国标排放。凹凸棒石对UO2+2的吸附遵循Langmuir吸附等温线;凹凸棒石及其协同体系对UO2+2的吸附动力学模型符合准二级动力学方程。凹凸棒石吸附铀前后的红外光谱表明,凹凸棒石主要是通过羟基、胺基等基团与铀络合进行吸附的。  相似文献   

13.
通过氮杂-迈克尔加成和胺肟化反应制备出UiO-66-AO材料,利用傅里叶变换红外光谱(FTIR)、X射线光电能谱(XPS)、X射线衍射(XRD)等手段对材料微观性质进行表征研究。深入考察了溶液的pH值、U(Ⅵ)初始浓度和温度等环境因素对吸附性能的影响。结果表明:UiO-66-AO材料对U(Ⅵ)的吸附在pH=5、4 h就达到平衡,吸附过程符合准二级动力学模型;在pH=5、55 ℃时,吸附容量可达到244 mg/g,吸附过程符合Langmuir等温吸附模型;该吸附是一个自发、吸热反应过程。此外,UiO-66-AO在众多其它金属离子存在情况下对U(Ⅵ)也具有优异的吸附效率。  相似文献   

14.
铀矿开采及铀分离纯化过程中产生的含铀废水可能严重污染环境和生态系统。利用吸附法分离含铀废水中的U(Ⅵ)既可有效回收铀资源,又能减轻环境污染。为达到高效分离含铀废水中U(Ⅵ)的目的,本文结合离子印迹及化学交联法制备了离子印迹壳聚糖(CS)/碳纳米管(CNT)(ICC)复合膜,采用静态吸附法考察了ICC对水溶液中U(Ⅵ)的吸附性能,并采用SEM、XRD、FTIR及XPS对吸附前后的ICC进行表征。表征结果表明,ICC具有多孔结构以及较丰富的功能基团(氨基、羧基),且CNT在壳聚糖基质中均匀分散。吸附实验结果表明:利用不同原料配比所制备的ICC中,以CS与CNT质量比为1∶0.3的ICC-2对U(Ⅵ)吸附性能最佳,是由于其具有丰富的孔结构以及经离子印迹产生的大量与铀酰离子匹配的空腔;ICC吸附U(Ⅵ)的吸附等温线符合Langmuir模型,在pH=5.0、298 K时,最大吸附容量达215.83 mg/g;吸附动力学符合准二级动力学模型,表明以化学吸附为控速步骤;ICC-2能选择性去除水溶液中的U(Ⅵ),且吸附过程为自发吸热过程。吸附U(Ⅵ)的ICC-2利用0.2 mol/L HNO...  相似文献   

15.
H2O2活化蒙脱石对溶液中U(Ⅵ)的吸附   总被引:1,自引:0,他引:1  
利用H2O2对蒙脱石进行活化,获得了活化蒙脱石吸附材料(AX-MMT),采用X射线衍射(XRD)、傅里叶红外谱图(FTIR)、透射电镜(TEM)、扫描电镜(SEM)、比表面分析(BET)、表面Zeta电位分析等手段对活化样品进行了表征;采用静态批量实验法,考察了H2O2浓度、pH值、接触时间和共存阴阳离子对U(Ⅵ)在AX-MMT上吸附率的影响。结果表明:活化保留了蒙脱石基础结构,其阳离子交换容量(CEC)有所减少,但层间距、比表面积、孔隙体积、表面酸位点和表面Zeta电位均有明显提升,对溶液中U(Ⅵ)的吸附性能显著增强;在最佳活性和吸附条件下(H2O2质量分数、pH值和接触时间分别为10%、6和24 h),蒙脱石对U(Ⅵ)的吸附性能提升了8.5倍,吸附行为符合准二级吸附动力学模型;在共存阴阳离子的干扰下,H2O2活化蒙脱石能对U(Ⅵ)展现良好的吸附性能。  相似文献   

16.
采用间氨基苯甲酸为原料,经重氮化-偶联反应对杯[4]芳烃进行上沿改性合成了间羧基苯偶氮基杯[4]芳烃衍生物,再通过取代反应对间羧基苯偶氮基杯[4]芳烃衍生物进行下沿修饰,制备出一种新型材料,即间羧基苯偶氮基杯[4]芳烃对称硫醚衍生物,并采用FT-IR和1H-NMR对其进行结构表征。将该新型材料作为吸附剂用于吸附低浓度含铀水溶液中的铀,考察了溶液pH值、吸附剂用量、铀初始浓度、吸附时间、吸附体系温度等因素对其吸附性能的影响。结果表明:在铀初始浓度为10 mg/L、pH=4、温度为25 ℃、吸附剂用量为10 mg、吸附平衡时间为4 h时,间羧基苯偶氮基杯[4]芳烃对称硫醚衍生物对U(Ⅵ)的吸附效果最佳;其吸附过程符合准二级动力学模型,吸附过程为化学吸附;吸附等温线符合Langmuir吸附等温模型,说明该吸附体系是以单层吸附为主。综上所述,间羧基苯偶氮基杯[4]芳烃对称硫醚衍生物是一种潜在的铀吸附剂。  相似文献   

17.
铀在木纤维上的吸附行为及机理分析   总被引:6,自引:2,他引:4  
为了解木纤维对铀的吸附特性,通过静态吸附实验,研究了木纤维的粒度、吸附时间、用量、温度及溶液的pH值和初始浓度等因素对模拟含铀废水中U(Ⅵ)去除率的影响,并从热力学和动力学方面对吸附过程进行了分析。结果表明:溶液初始pH≈3时,木纤维对铀的吸附平衡时间为4h,且吸附剂粒径越小、温度越高、用量越大,越有利于铀的去除;铀在木纤维上的吸附过程符合Langmuir等温吸附方程,吸附动力学过程可用准二级吸附动力学模型描述,表明化学吸附主要受动力学控制;木纤维吸附铀是自发的吸热反应。SEM、FT-IR和EDS分析结果表明,木纤维吸附铀后表面形态发生了改变,且在吸附过程中铀主要与木纤维表面活性基团螯合并形成配合物,存在表面络合吸附行为;吸附铀前后的能谱对比分析表明,吸附过程中存在离子交换行为。因此,木纤维对铀的吸附机理是以离子交换和表面络合吸附为主、物理吸附为辅的混合吸附过程。  相似文献   

18.
采用原位共沉淀法制备了磁性氧化石墨烯/β-环糊精(MGO/CD)复合材料。通过静态吸附实验,考察了pH值、MGO/CD用量、反应时间以及U(Ⅵ)初始浓度等因素对MGO/CD吸附U(Ⅵ)效果的影响。结果表明,最佳pH=6,吸附平衡时间为5 h。吸附过程符合准二级动力学模型和Langmuir等温吸附方程,30 ℃时最大吸附容量为322.6 mg/g。MGO/CD吸附U(Ⅵ)是自发的吸热反应。SEM、FT-IR和XRD分析结果表明,MGO/CD表面粗糙,凹凸不平,羟基、羰基和环氧基是U(Ⅵ)的主要结合位点。解吸实验结果表明,经4次吸附解吸循环实验后,MGO/CD的吸附率仍大于95%。  相似文献   

19.
韩磊  马福秋  薛云  矫彩山 《同位素》2019,32(1):13-21
放射性含铀废水会带来环境污染风险,合理有效处理含铀废水十分必要。本研究通过吸附实验探究偕胺肟聚丙烯腈(AO-PAN)对U(Ⅵ)的吸附特性,系统研究吸附温度、初始浓度、吸附时间对AO-PAN吸附U(Ⅵ)的影响。结果表明,随着吸附温度升高,AO-PAN对U(Ⅵ)的吸附量逐渐增加,在343 K温度时吸附量达201.6 mg/g。不同温度条件下随着吸附时间增加,AO-PAN对U(Ⅵ)的吸附量逐渐升高,吸附初始时吸附速率较快,随着吸附逐渐进行吸附曲线逐渐趋于平缓,最终达到吸附平衡。AO-PAN对铀的吸附量随溶液中初始浓度的增加而升高,温度为303 K,溶液中初始铀浓度为500 mg/L时,AO-PAN对U(Ⅵ)的吸附量达305.8 mg/g。此外,AO-PAN对铀酰离子的吸附符合朗格缪尔(Langmuir)模型,吸附热力学分析表明AO-PAN对铀酰离子的吸附是吸热和自发过程,吸附动力学分析表明AO-PAN对铀酰离子的吸附行为遵循准二级动力学模型,吸附速率控制机理分析表明AO-PAN对U(Ⅵ)的吸附初始受颗粒内扩散过程控制,随着吸附不断进行吸附过程逐渐由颗粒内扩散控制变为液膜扩散过程控制。吸附实验结果表明,AO-PAN是一种优良的吸附剂,可以用于吸附废水中U(Ⅵ),吸附过程的模型方程可以用于AO-PAN对U(Ⅵ)吸附过程的分析和计算。  相似文献   

20.
采用静态法研究了某铀矿山附近土壤中的红壤胶体在不同pH值、离子强度、吸附平衡时间、铀溶液初始浓度、胶体用量、胶体粒径和有机质条件下对U(Ⅵ)的吸附影响,从热力学和动力学方面对吸附过程进行了分析,并通过元素分析、红外光谱(FT-IR)和扫描电镜(SEM)对吸附机理进行了初步探讨。实验结果表明:离子强度越小,胶体粒径越小,胶体对U(Ⅵ)的吸附量越大;单位质量红壤胶体对铀的吸附量随铀初始质量浓度的增大而增大,随红壤胶体用量的增大而减少;在25 ℃、pH值为3.5、离子强度为0.001 mol/L时,粒径小于1 μm的红壤胶体的饱和吸附量qmax为76.76 μg/mg。红壤胶体吸附铀酰离子前后的红外光谱表明,与吸附相关的主要基团为羟基、羰基、Si-O、Si-O-Fe等。红壤胶体对铀的吸附遵循Langmuir吸附等温线,符合准二级吸附动力学方程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号