首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
厌氧氨氧化反应器的接种污泥和启动策略   总被引:9,自引:2,他引:7  
厌氧氨氧化细菌产率低,倍增时间长,导致厌氧氨氧化反应器启动过程缓慢,极大限制了其工程化应用,因此选择合适的厌氧氨氧化反应器的接种污泥和启动策略具有重要意义.探讨了污(废)水处理工程中常见的活性污泥用作厌氧氨氧化反应器接种污泥的基本原理、启动策略和应用效果,并对世界上第一个生产性厌氧氨氧化反应器的启动过程进行剖析,提出了加快厌氧氨氧化工程启动的"逐级富集扩大"模式.  相似文献   

2.
Emission of NO and N2O from a full-scale two-reactor nitritation-anammox process was determined during a measurement campaign at the Dokhaven-Sluisjesdijk municipal WWTP (Rotterdam, NL). The NO and N2O levels in the off-gas responded to the aeration cycles and the aeration rate of the nitritation reactor, and to the nitrite and dissolved oxygen concentration. Due to the strong fluctuations in the NO and N2O levels in both the nitritation and the anammox reactor, only time-dependent measurements could yield a reliable estimate of the overall NO and N2O emissions. The NO emission from the nitritation reactor was 0.2% of the nitrogen load and the N2O emission was 1.7%. The NO emission from the anammox reactor was determined to be 0.003% of the nitrogen load and the N2O emission was 0.6%. Emission of NO2 could not be detected from the nitritation-anammox system. Denitrification by ammonia-oxidizing bacteria was considered to be the most probable cause of NO and N2O emission from the nitritation reactor. Since anammox bacteria have not been shown to produce N2O under physiological conditions, it is also suspected that ammonia-oxidizing bacteria contribute most to N2O production in the anammox reactor. The source of NO production in the anammox reactor can be either anammox bacteria or denitrification by heterotrophs or ammonia-oxidizing bacteria. Based on the results and previous work, it seems that a low dissolved oxygen or a high nitrite concentration are the most likely cause of elevated NO and N2O emission by ammonia-oxidizing bacteria. The emission was compared with measurements at other reject water technologies and with the main line of the Dokhaven-Sluisjesdijk WWTP. The N2O emission levels in the reject water treatment seem to be in the same range as for the main stream of activated sludge processes. Preliminary measurements of the N2O emission from a one-reactor nitritation-anammox system indicate that the emission is lower than in two-reactor systems.  相似文献   

3.
The composition of distinctly inoculated granular anammox and biofilm-based completely autotrophic nitrogen removal over nitrite (CANON) bioreactors was investigated from start-up through continuous long-term operation via denaturing gradient gel electrophoresis (DGGE) and sequencing. The granular anammox reactor was seeded with sludge from an operational anammox reactor in Strass, Austria. The CANON reactor was seeded with activated sludge from a local wastewater treatment plant in New York City. The principal anammox bacteria (AMX) shifted from members related to Kuenenia stuttgartiensis present in the initial inoculum to members related to Candidatus Brocadia fulgida during pre-enrichment (before this study) and to members related to Candidatus Brocadia sp. 40 (during this study) in the granular reactor. AMX related to C. Brocadia sp. 40 were also enriched from activated sludge in the CANON reactor. The estimated doubling times of AMX in the granular and CANON reactors were 5.3 and 8.9 days, respectively, which are lower than the value of 11 days, reported previously. Both the granular anammox and CANON reactors also fostered significant amounts of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB). The fractions of AMX and two groups of NOB were generally similar in the granular anammox and CANON reactors. However, the diversity and fractions of AOB in the two reactors was markedly different. Therefore, it is suggested that the composition of the feed and extant substrate concentrations in the reactor likely select for the microbial community composition more than the inocula and reactor configuration. Further, such selection is not equivalent for all resident communities.  相似文献   

4.
Integrated fixed-film activated sludge (IFAS) processes are becoming more popular for both secondary and sidestream treatment in wastewater facilities. These processes are a combination of biofilm reactors and activated sludge processes, achieved by introducing and retaining biofilm carrier media in activated sludge reactors. A full-scale train of three IFAS reactors equipped with AnoxKaldnes media and coarse-bubble aeration was tested using off-gas analysis. This was operated independently in parallel to an existing full-scale activated sludge process. Both processes achieved the same percent removal of COD and ammonia, despite the double oxygen demand on the IFAS reactors. In order to prevent kinetic limitations associated with DO diffusional gradients through the IFAS biofilm, this systems was operated at an elevated dissolved oxygen concentration, in line with the manufacturer’s recommendation. Also, to avoid media coalescence on the reactor surface and promote biofilm contact with the substrate, high mixing requirements are specified. Therefore, the air flux in the IFAS reactors was much higher than that of the parallel activated sludge reactors. However, the standardized oxygen transfer efficiency in process water was almost same for both processes. In theory, when the oxygen transfer efficiency is the same, the air used per unit load removed should be the same. However, due to the high DO and mixing requirements, the IFAS reactors were characterized by elevated air flux and air use per unit load treated. This directly reflected in the relative energy footprint for aeration, which in this case was much higher for the IFAS system than activated sludge.  相似文献   

5.
Various studies have revealed anaerobic ammonium oxidation (anammox) as a very attractive alternative process suitable for nitrogen removal from wastewater. Here we investigated anammox bacteria in eight different nitrogen removal reactors. The diversity and abundance of anammox bacteria were determined by the 16S rRNA gene analysis, fluorescence in situ hybridization with specific probes and real-time quantitative PCR (qPCR). In these reactors, at least eight unique near full length anammox 16S rRNA gene sequences were detected, which were distributed over two genera; Candidati Brocadia and Kuenenia. FISH results confirmed that only one anammox bacterium dominated the community in each of the eight reactors investigated in this study. qPCR analysis revealed that anammox bacteria were present in seven of the reactors in the order of 109 cells/ml and 107 cells/ml in reactor A1. The dominant and divergent Brocadia-like anammox phylotype in one reactor represented a novel species for which we propose the name Candidatus Brocadia sinica. Taken together, these results indicated that a single seeding source could be used to seed anammox reactors designed to treat different types of wastewater, which could lead to a faster start-up of bioreactors.  相似文献   

6.
To promptly establish anaerobic ammonium oxidation (anammox) reactors, appropriate seeding sludge with high abundance and activity of anammox bacteria was selected by quantifying 16S rRNA gene copy numbers of anammox bacteria by real-time quantitative PCR (RTQ-PCR) and batch culture experiments. The selected sludge was then inoculated into up-flow fixed-bed biofilm column reactors with nonwoven fabric sheets as biomass carrier and the reactor performances were monitored over 1 year. The anammox reaction was observed within 50 days and a total nitrogen removal rate of 26.0 kg-Nm(-3)day(-1) was obtained after 247 days. To our knowledge, such a high rate has never been reported before. Hydraulic retention time (HRT) and influent NH(4)(+) to NO(2)(-) molar ratio could be important determinant factors for efficient nitrogen removal in this study. The higher nitrogen removal rate was obtained at the shorter HRT and higher influent NH(4)(+)/NO(2)(-) molar ratio. After anammox reactors were fully developed, the community structure, spatial organization and in situ activity of the anammox biofilms were analyzed by the combined use of a full-cycle of 16S rRNA approach and microelectrodes. In situ hybridization results revealed that the probe Amx820-hybridized anaerobic anammox bacteria were distributed throughout the biofilm (accounting for more than 70% of total bacteria). They were associated with Nitrosomonas-like aerobic ammonia-oxidizing bacteria (AAOB) in the surface biofilm. The anammox bacteria present in this study were distantly related to the Candidatus Brocadia anammoxidans with the sequence similarity of 95%. Microelectrode measurements showed that a high in situ anammox activity (i.e., simultaneous consumption of NH(4)(+) and NO(2)(-)) of 4.45 g-N of (NH(4)(+)+NO(2)(-))m(-2)day(-1) was detected in the upper 800 microm of the biofilm, which was consistent with the spatial distribution of anammox bacteria.  相似文献   

7.
Wu J  Bi L  Zhang JB  Poncin S  Cao ZP  Li HZ 《Water research》2012,46(10):3189-3196
Sludge washout is listed among the top practical problems of the high rate upflow anaerobic reactors. This study investigated quantitatively two sludge washout processes operated under different hydrodynamic shear increase modes with the intervals of 1 and 10 days respectively. The results reveal that the sludge washout accompanying with large-scale granule disruption could lead to performance failure with heavy sludge loss ratio of about 46.1% at sludge loss rate about 0.35 gVSS L−1 d−1 during the process with shear increase interval of 1 day, while the highest sludge loss rate was only 0.12 gVSS L−1 d−1 during the process with 10-day interval. The intensified shear conditions could weaken the granules through inhibiting the extracellular polymers production and bioactivity. As consequences, an outbreak of large-scale granule disruption would raise and then significantly accelerate the sludge washout. Since long interval could provide the granules the opportunity to recover from these negative effects to some extent, the shear increase strategy of long interval over 10 days is favorably recommended to operate full-scale reactors during the start-up and shock load periods. The pioneer use of the micro particle image velocimetry in this study offers the possibility to discover the real hydrodynamic conditions around granules at microscale for the first time and reveals that the shear force exerts directly on the granular surface as a mechanical disruption force and big granules undergo high disruption force. The granule disruption is a result of the competition between the granule and the ambient hydrodynamic shear conditions rather than a process with shear force as a sole dominant factor. These could facilitate the understanding of the complicated interactions between the hydrodynamics and reactor performance and favor then a better control of the full-scale reactors.  相似文献   

8.
The ammonium adsorption properties of aerobic granular sludge, activated sludge and anammox granules have been investigated. During operation of a pilot-scale aerobic granular sludge reactor, a positive relation between the influent ammonium concentration and the ammonium adsorbed was observed. Aerobic granular sludge exhibited much higher adsorption capacity compared to activated sludge and anammox granules. At an equilibrium ammonium concentration of 30 mg N/L, adsorption obtained with activated sludge and anammox granules was around 0.2 mg NH4-N/g VSS, while aerobic granular sludge from lab- and pilot-scale exhibited an adsorption of 1.7 and 0.9 mg NH4-N/g VSS, respectively. No difference in the ammonium adsorption was observed in lab-scale reactors operated at different temperatures (20 and 30 °C). In a lab-scale reactor fed with saline wastewater, we observed that the amount of ammonium adsorbed considerably decreased when the salt concentration increased. The results indicate that adsorption or better ion exchange of ammonium should be incorporated into models for nitrification/denitrification, certainly when aerobic granular sludge is used.  相似文献   

9.
《Water research》1996,30(6):1445-1450
Adaptation of denitrifying bacteria to the external carbon sources acetate and methanol was studied in bench-scale sequencing batch reactors. The reactors were seeded with sludge from a full-scale pre-denitrifying activated sludge plant and operated in cycles consisting of a 23.5 h anoxic period followed by 23 h aeration. A control reactor received no additional carbon. Potential denitrification rate, measured with the acetylene inhibition technique, and the most probable number of bacteria denitrifying with the specific carbon source were followed for 52 days. Actual rates in the reactors were estimated from cumulative gas production during anoxic operation. A period of adaptation was necessary when methanol or acetate was the supplemental carbon source. Adaptation to acetate was also observed in the control reactor. The acetate sludge was, however, probably better adapted to acetate as evidenced by the greater increase in activity per bacterium. The increase continued even after the maximum denitrification rate was reached. During adaptation to methanol the methanol denitrifying capacity per bacterium was fairly constant while the potential rate increased after an initial lag-phase. Sewage water without external carbon did not cause an increased methanol activity that could be interpreted as adaptation. We suggest that the bacteria denitrifying with acetate could be the same as those using the electron donors in the sewage. The bacteria in the methanol reactor seemed to consist of one population denitrifying with methanol and another with compounds in the sewage.  相似文献   

10.
The start-up of a full-scale synthesis gas-fed gas-lift reactor treating metal and sulfate-rich wastewater was investigated. Sludge from a pilot-scale reactor was used to seed the full-scale reactor. The main difference in design between the pilot- and full-scale reactor was that metal precipitation and sulfate reduction occurred in the same reactor. After 7 weeks the full-scale reactor achieved the sulfate conversion design rate of 15 kg/m3day. Zinc sulfide precipitation inside the reactor did not interfere with obtaining a high rate of sulfate reduction. 16S rRNA gene analysis demonstrated that the bacterial communities in both reactors were dominated by the sulfate-reducing genus Desulfomicrobium. Archaeal communities of both reactors were dominated by the methanogenic genus Methanobacterium. Most Probable Number (MPN) counts confirmed that heterotrophic Sulfate-Reducing Bacteria (SRB) were dominant (10(11) -10(12) cells/g VSS) compared to homoacetogens (10(5) -10(6) cells/g VSS) and methanogens (10(8) -10(9) cells/g VSS). Methanogenesis was not suppressed during start-up of the full scale-reactor, despite the predominance of SRB, which have a lower hydrogen threshold. Due to the short sludge retention time (4-7 days) competition for hydrogen is determined by Monod kinetics, not hydrogen thresholds. As the kinetic parameters for SRB and methanogens are similar, methanogenesis may persist which results in a loss of hydrogen.  相似文献   

11.
膨胀颗粒污泥床厌氧反应器的快速启动研究   总被引:3,自引:1,他引:3  
以膨胀颗粒污泥床(EGSB)反应器生产实践为基础进行的处理模拟生活污水的试验发现:在启动过程中,接种污泥含有厌氧颗粒污泥菌种和适量的絮状厌氧污泥可以加快反应器启动;采用添加微量金属营养元素和进水COD负荷基本不变及稳定后增加负荷的三段式进水操作方式,有助于颗粒污泥的形成和加快反应器的启动;在培养过程中出现的反应器壁膜对颗粒污泥的生成可起到促进和辅助作用,并能提高反应器的抗冲击负荷能力。研究结果对EGSB反应器的生产实践具有重要的指导作用,可作为反应器实际运行的参考依据。  相似文献   

12.
Variation of bulk properties of anaerobic granules with wastewater type   总被引:11,自引:0,他引:11  
Batstone DJ  Keller J 《Water research》2001,35(7):1723-1729
Development of a granular sludge with high strength, high biological activity and a narrow settling distribution is necessary for optimal operation of high-rate upflow anaerobic treatment systems. Several studies have compared granules produced from different wastewaters but these have largely been from laboratory-fed reactors or compared granules from full-scale reactors fed similar wastewater types. Though two authors have commented on the inferiority of granules produced by a protein-based feed, the properties of these granules have not been characterised. In this paper, granules from full-scale reactors treating fruit and vegetable cannery effluent, two brewery effluents and a pig abattoir (slaughterhouse) were compared in terms of basic composition, size distribution, density, settling velocity, shear strength, and EPS content. The results supported previous qualitative observations by other researchers that indicate granule properties depend more on wastewater type rather than reactor design or operating conditions such as pre-acidification level. The cannery-fed granules had excellent shear strength, settling distribution and density. Granules from the two brewery-fed reactors had statistically the same bulk properties, which were still acceptable for upflow applications. The protein-grown granule had poor strength and settling velocity.  相似文献   

13.
Dimensional analysis techniques were applied to the differential equations for a well mixed activated sludge reactor to obtain generalized information on the effect of process variables on conversion of substrate. The Monod model was used to represent the reaction kinetics since it also contains first and second order kinetics as special cases. The performance of a steady state reactor could be described in terms of five dimensionless groups involving the important combinations of process variables. A simple criterion was developed to predict washout conditions for reactors without recycle of biological solids. Under certain operating conditions, activated sludge reactors were shown to possess an inherent degree of self control to compensate for changes in feed concentration.  相似文献   

14.
A synthetic feed, containing acetate as the only carbon source, was used to start-up four different anaerobic expanded-bed reactors containing three different types of microbial attachment media. The media types used were low-density anthracite, granular activated carbon (GAC) and two sizes of sand. All media types were of the same average diameter, 0.7 mm, except for a smaller sand, 0.35 mm. These media types were chosen to compare surface roughness, macroscopic shear stresses due to upflow velocity and sphericity. The 0.7 mm sand required the greatest upflow velocity, 16 cm/s, while the other reactors had upflow velocities of 5.5–6.0 cm/s. Sand had the least surface roughness and GAC had the roughest surface, while anthracite had the most angular shape. At steady-state, the GAC reactor retained 3.75–10 times the attached biomass retained on the other media tested and the GAC reactor accumulated biomass at a faster rate during start-up. Shear losses reflected the biomass accumulation with the two sand and anthracite media having shear loss coefficients 6–20 times greater than that of the GAC medium. Sand induced the formation of sludge granules in both sand reactors with two species of methanogens and stability of the sludge blankets was critical to reactor performance. Scanning electron microscopy demonstrated that attached growth developed in crevices where biomass was protected from shear forces. Attached growth on the sand and anthracite media was located only in crevices, while the GAC medium is completely covered with crevices and biofilm developed on the entire GAC particle. Surface roughness was critical to biofilm development with the rougher surface providing the better attachment medium.  相似文献   

15.
The relationship between the levels of mycolic acid-containing actinomycetes (mycolata), Gordonia spp. and Gordonia amarae, and foam initiation and stability was characterized using: (1) batch tests involving addition of G. amarace cells to activated sludge, (2) analysis of a full-scale activated sludge plant that experienced seasonal foaming, and (3) a study of lab-scale activated sludge reactors augmented with G. amarae. Using batch tests, threshold Gordonia levels for foam formation and foam stability were determined to be approximately 2 x 10(8) microm ml(-1) and 1 x 10(9) microm ml(-1), respectively. In the full-scale plant, the levels of Gordonia spp. and G. amarae increased during the course of foaming, and the foam formation threshold of 2 x 10 microm ml(-1) corresponded to the onset of foaming. This value was also verified in lab-scale reactor washout experiments, where decreasing mycolata levels were observed during the course of foam dissipation. The foam stability threshold of 1 x 10(9) micorm ml(-1) was verified in lab-scale reactor studies. The increase in the levels of Gordonia spp. and G. amarae in the full-scale plant corresponded to an increase in temperature, suggesting that the growth of Gordonia spp. was favored during warmer periods.  相似文献   

16.
Mixing and transport phenomena affect the efficiency of all bioreactor configurations. An even mixing pattern at the macro-level is desirable to provide good conditions for substrate transport to, and from, the microbial aggregates. The state of segregation of particulate material in the reactor is also important. The production of biogas in anaerobic reactors is another factor that affects mixing intensity and hence the interactions between the liquid, solid and gaseous phases. The CSTR model with some degree of short-circuiting, dead zones and bypassing flows seems to describe the overall hydrodynamics of UASBs. However, few data are available in the literature for full-scale reactors that relate process performance to mixing characteristics. Dispersion studies using LiCl were done for four hydraulic loading rates on a full-scale UASB treating domestic wastewater in Ginebra, Valle del Cauca, southwest Colombia. COD, TSS, and Settleable Solids were used to evaluate the performance of organic matter removal. The UASB showed a complete mixing pattern for hydraulic loading rates close to the design value (i.e. Q = 10-13l s(-1) and HRT=8-6 h). Gross mixing distortions and localised stagnant zones, short-circuiting and bypass flows were found in the sludge bed and blanket zones for both extreme conditions (underloading and overloading). The liquid volume contained below the gas-liquid-solid separator was found to contribute to the overall stagnant volume, particularly when the reactor was underloaded. The removal of organic matter showed a log-linear correlation with the dispersion number.  相似文献   

17.
介绍一种组合式折流板反应器(CBR),由缺氧区—厌氧区—好氧区组成。好氧区部分出水回流至缺氧区进行脱氮,实现了A2/O与折流板反应器的嵌套,在保留厌氧折流板反应器(ABR)优点的同时,强化了COD去除率和脱氮效果。采用模拟污水,通过先启动厌氧区,再启动好氧区,最后启动缺氧区的方式成功启动了CBR,获得了启动过程中COD去除率、pH、产气量、TN等参数随时间的变化规律。反应器启动后COD去除率可以稳定达到90%以上,总氮去除率可以达到80%以上。电镜扫描结果表明,厌氧区各格室颗粒污泥具有明显的相分离特性。  相似文献   

18.
Potier O  Leclerc JP  Pons MN 《Water research》2005,39(18):4454-4462
Residence time distribution experiments have been performed on an activated sludge 3000 m3 channel reactor aerated by gas diffusion (for different liquid flowrates under constant aeration rate and constant water depth) and on a bench-scale channel reactor aerated from the bottom (for different liquid and gas flowrates and water depths) in order to characterize their hydrodynamics. Both units can be modeled as plug flow reactors with axial dispersion. A general correlation has been obtained to predict the axial dispersion coefficient as a function of the gas and liquid velocities and the geometrical parameters of the full-scale and bench-scale reactors. Finally, to facilitate the simulation of biological reactions in transient state, an equivalent model based on tanks-in-series with variable back-mixing flowrate is proposed.  相似文献   

19.
The effects of microwave (MW) pretreatment, staging and digestion temperature on anaerobic digestion were investigated in a setup of ten reactors. A mesophilic reactor was used as a control. Its performance was compared to single-stage mesophilic and thermophilic reactors treating pretreated and non-pretreated sludge, temperature-phased (TPAD) thermophilic-mesophilic reactors treating pretreated and non-pretreated sludge and thermophilic-thermophilic reactors also treating pretreated and non-pretreated sludge. Four different sludge retention times (SRTs) (20, 15, 10 and 5 d) were tested for all reactors. Two-stage thermo-thermo reactors treating pretreated sludge produced more biogas than all other reactors and removed more volatile solids. Maximum volatile solids (VS) removal was 53.1% at an SRT of 15 d and maximum biogas increase relative to control was 106% at the shortest SRT tested. Both the maximum VS removal and biogas relative increase were measured for a system with thermophilic acidogenic reactor and thermophilic methanogenic reactor. All the two-stage systems treating microwaved sludge produced sludge free of pathogen indicator bacteria, at all tested conditions even at a total system SRT of only 5 d. MW pretreatment and staging reactors allowed the application of very short SRT (5 d) with no significant decrease in performance in terms of VS removal in comparison with the control reactor. MW pretreatment caused the solubilization of organic material in sludge but also allowed more extensive hydrolysis of organic material in downstream reactors. The association of MW pretreatment and thermophilic operation improves dewaterability of digested sludge.  相似文献   

20.
Franco A  Roca E  Lema JM 《Water research》2006,40(5):871-880
In this work, the effect of the application of a pulse system to anoxic upflow sludge bed (USB) denitrifying reactors for enhancing sludge granulation was studied. In all, three 0.8 L reactors (two operated with flow pulsation, P1 with effluent recycling and P2 without recycling, and one without pulsation and effluent recycling, no pulsation (NP)) were fed with a mixture of NaNO3 and glucose and inoculated with methanogenic granular sludge. The organic loading rate (OLR) and the nitrogen loading rate (NLR) were progressively increased and, at the end of the experiment, extremely high values were obtained (67.5 kgCOD/m3d and 11.25 kgN-NO3-/m3 d). Ammonia and nitrite accumulation in reactor NP were important in the maturation stage, decreasing the denitrification efficiency to 90%, while in reactor P1 only low nitrite values were obtained in the last few days of the experiment. In reactor P2, nitrogen removal was 100% most of the time. Several operational problems (flotation and the subsequent wash out of biomass) appeared in the NP reactor when working at high denitrifying loading rates, while in reactors P1 and P2 there were no notable problems, mainly due to the good characteristics of the sludge developed and the efficient degasification produced by the pulsing flow. The sludge formed in the NP reactor presented a flocculent structure and a total disintegration of the initial methanogenic granules occurred, while a small-sized granular biomass with a high specific density was developed in the pulsed reactors due to the shear stress produced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号