首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
基于100 nm硅基氮化镓(GaN)工艺,本文设计并实现了一款工作频段为20~26 GHz且增益平坦的可变增益低噪声放大器(VGLNA).该放大器采用三级共源级级联来实现高增益,并通过调节第二、第三级的栅极偏置实现增益控制.测试结果表明,该放大器在工作频段内实现了超过20 dB的增益可变范围和±1.5 dB的增益平坦度,在增益可变范围内功耗为126 mW至413 mW.在最大增益状态下,该放大器在整个频段内可实现大于20 dB的小信号增益且噪声系数(NF)为2.95 dB至3.5 dB,平均输出1dB压缩点(OP1dB)约为14.5 dBm.该芯片的面积为2 mm~2.  相似文献   

2.
3~6GHz SiGe HBT Cascode低噪声放大器的设计   总被引:1,自引:1,他引:0  
基于Jazz 0.35μm SiGe工艺设计一款满足UWB和IEEE802.11a标准的低噪声放大器.采用并联电感峰化技术与Cascode结构来展宽带宽;完成了芯片版图的设计,芯片面积为1.16 mm×0.78 mm;在带宽为3~6 GHz范围内,最大增益为26.9 dB,增益平坦度为±0.9 dB.放大器的输入输出匹配良好,其回波损耗S11和S22均小于-10dB,输入与输出驻波比小于1.5,1 dB压缩点为-22.9 dBm.在整个频段内,放大器无条件稳定.  相似文献   

3.
基于TSMC 0.18μm RF CMOS工艺采用共源共栅结构设计了一款低噪声放大器(low-noise amplifier,LNA),用于接收GPS L1频段信号和BDS B1频段信号的导航接收机中。通过合理选择器件参数,减小了系统噪声性能并提高了系统的线性度。利用Cadence软件中Spectre对电路进行仿真。结果表明,LNA在1.8V电源电压下,功耗仅为3.78mW。功率增益为13.29dB,输入输出回波损耗均小于-20dB,反向隔离度S12为-49.21dB,噪声系数(noise figure,NF)为0.46dB,输入1dB压缩点为-12.20dBm,三阶交调点为-6.62dBm。  相似文献   

4.
基于100 nm的氮化镓(Gallium Nitride, GaN) 高电子迁移率晶体管(High Electron Mobility Transistor, HEMT) 工艺设计了一款毫米波低噪声放大器(Low Noise Amplifier, LNA) 单片式微波集成电路(Monolithic Microwave Integrated Circuit, MMIC) 芯片。该款低噪声放大器采用三级级联的拓扑结构,对带宽、噪声和增益进行了联合优化设计。测试结果显示,工作频率范围覆盖24~30 GHz,可兼顾5G毫米波n257(26.5~29.5 GHz) 和n258(24.25~27.5 GHz) 频段,噪声系数可达到2.4~2.5 dB的水平,小信号增益在21.1~24.1 dB之间,输出1 dB功率压缩点大于14.4 dBm的水平。  相似文献   

5.
一种低功耗CMOS并行双频低噪声放大器   总被引:2,自引:0,他引:2  
基于SMIC 0.18μm 1P6M CMOS工艺,设计实现了一种低功耗单端输入转差分输出的并行双频低噪声放大器。采用带有源级电感负反馈的共源共栅结构,在功耗限制下在双频段对输入阻抗和噪声性能同时进行优化,实现并行接收,并具有单端输入转差分输出的功能。该低噪声放大器核心电路尺寸为450μm×350μm。仿真表明,低噪声放大器(LNA)在1.227GHz和1.575GHz工作频率处的输入回波损耗分别为-11.61dB和-12dB,功率增益分别为14.67dB和12.68dB,噪声系数分别为2.3dB和2.53dB,输入l dB压缩点分别为-18.5dBm和-14.5dBm。在1.8V电源电压下,功耗仅为8.4mW,可用于航空航天领域的电子系统中。  相似文献   

6.
针对近年来快速发展的多模卫星组合导航技术需求,提出覆盖主流全球卫星导航系统(GNSS)频段(包括GPS、GLONASS、伽利略、北斗)的低噪声放大器模块.该低噪声放大器模块采用SIP封装技术,在一个3 mm×3mm×1mm的塑料封装内集成了低噪声放大器芯片及输入输出匹配电路等片外电路,封装外无需额外分立元件.低噪声放大器芯片采用低噪声的0.25μm GaAs pHEMT工艺流片.在芯片设计中,提出新型的有源偏置电路,可以抵御电源电压和环境温度的波动,使该低噪声放大器模块能够在复杂的环境中稳定工作.测试结果表明,该低噪声放大器模块在工作频段内噪声系数约为0.65dB,增益可达20dB,输入输出回波损耗小于-10dB,中心频率输入三阶互调阻断点为0.6dBm,电源电压为3.3V,功耗为15mW.  相似文献   

7.
设计了一个应用于超宽带(UWB)系统的3~5 GHz超宽带低噪声放大器.电路由二阶切比雪夫滤波器,电阻并联反馈,两级共源共栅结构,源级跟随器组成.低噪声放大器采用0.18 mCMOS工艺进行设计,利用ADS 2006 A进行仿真.结果表明,低噪声放大器在3~5 GHz带宽范围内噪声系数(NF)小于2dB,功率增益在23.9~24.8 dB之间,输入端口反射系数小于-10dB,输出端口反射系数小于-15dB,IIP3为-11dBm在1.8 V的电源电压下,核心电路功耗为10 mW.  相似文献   

8.
该文采用电容交叉耦合技术,设计了基于SMIC0.18μm CMOS工艺的应用于北斗二号接收机全差分低噪声放大器,中心频率为1 561.098MHz。仿真结果表明:该低噪放的噪声系数为2.045dB,功率增益S21为19.684dB,输入反射系数S11和输出反射系数S22分别小于-13dB和-40dB,反向隔离S12小于-40dB,线性度IIP3大于-5.5dBm,在1.8V电压下的总功耗为16mW。  相似文献   

9.
针对信号频段为3.1~10.6GHz的超宽带系统射频前端,提出一种基于0.13μm CMOS技术的低噪声放大器设计与实现.该放大器采用两级结构,通过第一级单端型电阻反馈和第二级单端转差分型电压缓冲器的级联设计,在获得足够的信号功率增益的同时,能够实现超宽带范围内的输入匹配.整体电路仿真结果表明:在3.1~10.6GHz的工作频段,电压增益为23.2dB,输入回波损耗小于-13dB.在6GHz时噪声系数最小值为2.4dB,最大值为2.7dB,输入三阶交调截取点(IIP3)为-11.9dBm.在1.2V电源电压下,该低噪声放大器功耗为12.2mW,芯片面积为0.32mm2.  相似文献   

10.
基于0.25μm GaAs pHEMT工艺,设计了一款工作频率为0.1 GHz~8.0 GHz的超宽带低噪声放大器,采用单级共源共栅(cascode)结构,使用电阻并联负反馈扩展了低噪声放大器的带宽,并且采用电感中和技术补偿了高频增益与提高频率响应。仿真结果表明:该款低噪声放大器的分数带宽高达195%,噪声系数小于1.32 dB,最高增益为21.2 dB,1 dB压缩点为16 dBm。在砷镓化合物工艺设计的低噪放中,本文拥有195%的分数带宽,较高的增益和较低的噪声系数。  相似文献   

11.
在传统的窄带达林顿结构放大器基础上,提出一种新型高增益超宽带达林顿结构低噪声放大器.该放大器采用高频低噪声晶体管,采用电感补偿技术和正实电阻补偿技术,保持了达林顿放大器高增益的优点,而且也取得了低噪声、良好输入输出匹配和宽带稳定性.通过优化设计,新型放大器在3.1~6 GHz内,增益S21高达21 dB,变化不超过0.3 dB,噪声系数F为1.5~2.1 dB,输入输出反射系数S11和S22都小于-14 dB,在宽带内保持稳定.  相似文献   

12.
本放大器是为卫星通讯地面站研制的,用来作为前置低噪声放大。本文简述了 GaAsFET的结构和小信号等效电路,噪声模型分析,以及散射参数,给出了放大器的设计,调试方法,以及放大器的实测性能,其典型值为:增益 G=29dB,整机噪声温度 Ter 约为200°K左右,工作带宽 B=500MC,带内增益波动△G≤±0.75dB,1dB 增益压缩点的输出功率 put= 5.5dBm.  相似文献   

13.
针对传统的宽带LNA普遍存在噪声系数大、芯片面积相对较大等不足,采用0.18 μm CMOS工艺设计了一种基于IEEF802.11a的全集成低噪声放大器(LNA),选用源级电感负反馈电路,实现了良好的输入匹配.调整偏置电压和MOS管的宽长比进行了噪声优化.后仿真结果表明,在5.15~5.825 GHz的频带范围内,增益S21大于16.03 dB,增益平坦度为1.51 dB,最大噪声系数和输入三阶截点分别为2.565 dB、-2.15 dBm.采用1.8V电源供电,电路总功耗约为13.29mW.  相似文献   

14.
在系统中集成超宽带(UWB)收发机芯片用于支持室内定位正成为移动通信终端技术发展的一个重要趋势.在超宽带收发机中,低噪声放大器(LNA)是一个核心功能模块.超宽带的全频段(3.1~10.6 GHz)覆盖要求给低噪声放大器的设计带来了巨大挑战,尤其是需要在宽带匹配及在带内维持平坦的噪声系数的情况下.传统的低噪声放大器架构应用在超宽带设计时,噪声、增益和输入匹配之间存在较明显的性能折中关系,因此无法达到良好的综合性能指标要求.本文采用基于变压器反馈的输入匹配的第一级架构和多功能第二级输出驱动结构,实现了平坦的噪声系数和高增益等性能.基于TSMC 65 nm工艺设计的电路仿真结果表明,该低噪声放大器在3.1~10.6 GHz全频段内,可实现输入匹配S_(11)-10 dB,增益17 dB,噪声系数2.71±0.28 dB,1-dB压缩点-17.5 dBm等指标,电路整体功耗为32.8 mW.因此,综合性能Ⅰ(FoM-Ⅰ)和综合性能Ⅱ(FoM-Ⅱ)分别可达2.32和0.41.  相似文献   

15.
根据反馈分解理论将晶体管栅漏电容分解等效到放大器输入输出两端,研究了栅漏电容对低噪声放大器(LNA)输入阻抗和噪声系数的影响.基于分析结果对阻抗及噪声公式进行了修正,提出功耗约束条件下的LNA噪声优化方法.设计的2.4 GHz LNA基于中芯国际(SMIC) 0.18 μm RF CMOS工艺,版图后仿结果表明:在1.2 V的工作电压下,该低噪声放大器直流功耗仅为2.4 mW,噪声系数为1.0 dB,功率增益为16.3 dB,输入输出反射损耗均小于-22 dB,三阶互调点IIP3为-3.2 dBm.相比已有的设计,根据修正公式设计的LNA在功耗、输入阻抗匹配、噪声系数等性能指标上有较大的改善.  相似文献   

16.
采用0.18μmCMOS工艺设计应用于802.11aWLAN的5.8GHzLNA.,给出了采用ADS的模拟结果:在中心频率5.8 G Hz处,LNA功率增益为16.97dB,阻抗匹配系数S11小于-18dB,噪声系数(NF)为2.3dBm,输入1dB压缩点为-23.33dBm.输出1dB压缩点为-7.361dBm,功耗小于15mW.  相似文献   

17.
提出了一种新型的低噪声掺Er光纤放大器(EDFA)。将光波长交错器的输入端口与普通EDFA的输出端相连接,用于降低噪声,信号光由光波长交错器的偶信道端口输出。利用光波长交错器的梳状反射特性,抑制EDFA的放大自发辐射(ASE),改善EDFA的噪声特性,使其具有低噪声的特点。采用4m长的掺Er光纤(EDF)作为增益介质,小信号功率为-26dBm时,在1530~1560nm带宽范围内,测得低噪声EDFA的噪声系数低于3.83dB,仅比噪声系数的量子极限3dB大0.83dB。  相似文献   

18.
针对宽带低噪声放大器带宽内增益波动性大的问题,设计一种平坦高增益的宽带低噪声放大器。采用两级放大器级联形式,在第一级放大电路中引入负反馈电路,设计ATF-54143的偏置电路并分析其稳定性。在两级放大电路之间添加增益补偿网络,改善宽带低噪声放大器的阻抗匹配和增益平坦度。仿真结果表明,在0.9~2.5GHz频率范围内,该宽带低噪声放大器的增益为(30.0±0.3)dB,噪声系数小于1.5dB,输入、输出反射系数均小于-10dB,达到设计要求。在误差允许范围内,实物测试结果与仿真结果相符合。  相似文献   

19.
设计了一种工作于北斗导航终端S频段有源天线的单级低噪声放大器(LNA)。电路结构简洁、噪声低、体积小,全面考虑了回波损耗、噪声系数、增益、稳定性等指标。在利用ADS软件反复仿真优化的基础上,设计制作了电路实物。实测表明所设计的LNA在S频段处的增益为10.95 dB,噪声系数最大仅为1.075 dB,输入输出回波损耗均在-10 dB以下,反向隔离度为-25.681 dB,适用于北斗导航终端S频段有源天线的第一级信号放大。  相似文献   

20.
基于TSMC 0.18μm CMOS工艺,设计一款应用于软件无线电射频收发系统的高线性度宽带可编程增益放大器。采用闭环负反馈结构,通过差分运算放大器电路以及选通无源电阻电容网络实现增益dB线性可调,添加负电容电路扩展带宽,满足高线性度要求。同时,添加具有四阶巴特沃斯滤波器的直流漂移抑制电路抑制直流偏移。仿真结果表明,该可编程增益放大器在1.8V电源电压下,工作电流为7mA,增益动态范围为-11~20dB,步长为1dB,工作带宽为0~100MHz,输出1dB压缩点为14.8dBm,噪声系数为23dB。能够满足软件无线电射频收发系统的指标需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号