首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
界面对纤维增强陶瓷基复合材料拉伸性能的影响   总被引:3,自引:2,他引:1       下载免费PDF全文
建立了桥联纤维细观力学模型, 研究了界面对纤维增强陶瓷基复合材料拉伸模量及强度的影响。分别引入纤维应力均匀系数和界面脱粘率作为界面完全脱粘和局部脱粘条件下界面性能的表征参数。研究表明, 应力均匀系数及界面脱粘率越大, 材料模量越低, 而断裂时纤维所承担的应力越高。基于混合率给出了拉伸强度表达式, 同时也分析了基体裂纹分布、界面脱粘和纤维拔出对强度的影响。计算结果表明, 本文强度模型给出的预测值与试验值吻合较好。   相似文献   

2.
研究一个纤维拔出界面脱粘断裂能量释放率分析的简单模型,给出纤维-基体界面断裂能GⅡ工程计算公式的推导过程.用有限元法检查了该公式的可靠性与适用范围.并提出一个修正表达式  相似文献   

3.
纤维—基体界面脱粘能量释放率   总被引:2,自引:0,他引:2  
研究一个纤维拔出界面脱粘断裂能量释放率分析的简单模型,给出纤维-基体界面断裂能GⅡ工程计算公式的推导过程,用有限元法检查了该公式的可靠性与适用范围,并提出一个修正表达式。  相似文献   

4.
界面相多重开裂对纤维强度的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
当纤维表面的界面相(如涂层)较脆时,纤维发生断裂之前界面相一般会发生多重开裂的损伤,这种损伤裂纹垂直于纤维轴向,故能导致纤维强度下降.本文以四相(纤维,界面相,基体,复合材料)圆柱体模型为基础,并假设界面脱粘后不再传递剪应力.首先用剪切滞后理论求得了界面相发生多重开裂后,纤维、界面相中的应力集中系数,以及界面上的剪应力,并同时考虑了纤维与界面相间界面部分脱粘的影响;然后,假设纤维强度统计特性用Weibull分布函数表示,从而根据界面相多重开裂在纤维中引起的应力集中系数K_f得到广纤维破坏概率的变化.最后利用界面脱粘区的大小,定性研究了界面剪切强度τ0对纤维强度的影响,结果表明:存在一个最佳的界面剪切强度τ0,使界面相多重开裂对纤维强度的影响最小.  相似文献   

5.
研究了两级拉伸疲劳载荷作用下,纤维增强复合材料界面的脱粘。首先基于剪切筒模型,建立了求解纤维与基体应力的控制微分方程,并求得了相关解答。然后借助断裂力学中描述疲劳裂纹扩展的公式和能量耗散率理论,给出了界面脱粘长度、加载次数以及脱粘应力之间的关系式。最后通过实例模拟了两级拉伸疲劳载荷作用下的界面裂纹扩展,分析了界面疲劳裂纹扩展速率、脱粘长度在不同加载方式下的变化规律,以及材料泊松比的变化对界面脱粘的影响。从而为进一步研究工程结构的疲劳破坏和材料的最优设计提供一定的理论依据。   相似文献   

6.
采用细观力学方法研究了正交铺设SiC/CAS复合材料在单轴拉伸载荷作用下界面脱粘对基体开裂的影响。采用断裂力学界面脱粘准则确定了0°铺层纤维/基体界面脱粘长度, 结合能量平衡法得到了主裂纹且纤维/基体界面发生脱粘(即模式3)和次裂纹且纤维/基体界面发生脱粘(即模式5)的临界开裂应力, 讨论了纤维/基体界面剪应力、 界面脱粘能对基体开裂应力的影响。结果表明, 模式3和模式5的基体开裂应力随纤维/基体界面剪应力、 界面脱粘能的增加而增加。将这一结果与Chiang考虑界面脱粘对单向纤维增强陶瓷基复合材料初始基体开裂影响的试验研究结果进行对比表明, 该变化趋势与单向SiC增强玻璃陶瓷基复合材料的试验研究结果一致。  相似文献   

7.
单向纤维增强陶瓷基复合材料单轴拉伸行为   总被引:11,自引:5,他引:6       下载免费PDF全文
采用细观力学方法对单向纤维增强陶瓷基复合材料的单轴拉伸应力-应变行为进行了研究。采用Budiansky-Hutchinson-Evans(BHE)剪滞模型分析了复合材料出现损伤时的细观应力场,结合临界基体应变能准则、应变能释放率准则以及Curtin统计模型三种单一失效模型分别描述陶瓷基复合材料基体开裂、界面脱粘以及纤维失效三种损伤机制,确定了基体裂纹间隔、界面脱粘长度和纤维失效体积分数。将剪滞模型与3种单一失效模型相结合,对各个损伤阶段的应力-应变曲线进行模拟,建立了准确的复合材料强韧性预测模型,并讨论了界面参数和纤维韦布尔模量对复合材料损伤以及应力-应变曲线的影响。与室温下陶瓷基复合材料单轴拉伸试验数据进行了对比,各个损伤阶段的应力-应变、失效强度及应变与试验数据吻合较好。  相似文献   

8.
正交铺设陶瓷基复合材料单轴拉伸行为   总被引:2,自引:0,他引:2  
采用细观力学方法对正交铺设陶瓷基复合材料单轴拉伸应力-应变行为进行了研究。采用剪滞模型分析了复合材料出现损伤时的细观应力场。采用断裂力学方法、 临界基体应变能准则、 应变能释放率准则及Curtin统计模型4种单一失效模型确定了90°铺层横向裂纹间距、 0°铺层基体裂纹间距、 纤维/基体界面脱粘长度和纤维失效体积分数。将剪滞模型与4种单一损伤模型结合, 对各损伤阶段应力-应变曲线进行了模拟, 建立了复合材料强韧性预测模型。与室温下正交铺设陶瓷基复合材料单轴拉伸应力-应变曲线进行了对比, 各个损伤阶段的应力-应变、 失效强度及应变与试验数据吻合较好。分析了90°铺层横向断裂能、 0°铺层纤维/基体界面剪应力、 界面脱粘能、 纤维Weibull模量对复合材料损伤及拉伸应力-应变曲线的影响。   相似文献   

9.
选用M40石墨纤维为增强体,采用真空气压浸渗法制备了纤维体积分数为40%,基体合金分别为ZL102、ZL114A、ZL205A及ZL301合金的连续M40/Al复合材料,并用NaOH溶液萃取出M40纤维,研究了基体合金对连续M40/Al复合材料纤维损伤和断裂机制的影响。结果表明:不同的基体合金对M40纤维造成的损伤差异较大,从M40/ZL301复合材料中萃取的纤维拉伸强度最高,其拉伸强度为1 686 MPa,约为纤维原丝拉伸强度的38.3%;而从M40/ZL102复合材料中萃取的纤维拉伸强度最低,其拉伸强度仅为687 MPa,且纤维表面粗糙程度不一。不同M40/Al复合材料的断裂机制存在明显差别,M40/ZL102和M40/ZL114A复合材料断裂时无纤维拔出及界面脱粘,裂纹横向穿过纤维导致复合材料在低应力下失效;M40/ZL205A复合材料则表现为少量纤维拔出,界面轻微脱粘;同时,M40/ZL301复合材料表现为大量纤维拔出,裂纹沿界面纵向扩展,界面脱粘明显,纤维充分发挥其承载作用,复合材料的拉伸强度最高,达到了670.2 MPa。   相似文献   

10.
碳/锌复合材料的断口与断裂分析   总被引:1,自引:1,他引:0       下载免费PDF全文
本文利用扫描电子显微镜观察了用液态渗透法制得的碳/锌复合材料的拉伸和冲击断口,并通过纵向、偏轴和横向动态拉伸试验,对该复合材料的断裂过程进行了观察与分析。结果表明:该复合材料的正常断口是纤维呈拔出断裂而基体呈解理断裂的拔出型断口;其断裂方式为:裂纹在基体中或在弱的界面上萌生,其裂尖处的高应力促使碳纤维与基体界面脱粘,基体中的裂纹沿解理面扩展、相遇、而纤维则发生断裂、拔出,最后复合材料失效。本文还分析了界面结合强度、纤维取向及其分布等因素对碳/锌复合材料断裂特性的影响。   相似文献   

11.
In this paper, the strength degradation of non-oxide and oxide/oxide fiber-reinforced ceramic-matrix composites (CMCs) subjected to cyclic loading at elevated temperatures in oxidative environments has been investigated. Considering damage mechanisms of matrix cracking, interface debonding, interface wear, interface oxidation and fibers fracture, the composite residual strength model has been established by combining the micro stress field of the damaged composites, the damage models, and the fracture criterion. The relationships between the composite residual strength, fatigue peak stress, interface debonding, fibers failure and cycle number have been established. The effects of peak stress level, initial and steady-state interface shear stress, fiber Weibull modulus and fiber strength, and testing temperature on the degradation of composite strength and fibers failure have been investigated. The evolution of residual strength versus cycle number curves of non-oxide and oxide/oxide CMCs under cyclic loading at elevated temperatures in oxidative environments have been predicted.  相似文献   

12.
Model composites consisting of Si C fiber embedded inβ-Yb2Si2O7 matrix were processed by Spark Plasma Sintering method and the feasibility of tunable Si Cf/Yb2Si2O7 interface in Si C-based CMCs were estimated.Weak and strengthened Si Cf/Yb2Si2O7 interfaces were achieved by adjusting sintering temperatures.The indentation crack test and fiber push out experiments clearly demonstrated the different debonding mechanisms in the samples.Weak interfaces sintered at 1200 and 1250℃exhibited crack deflection at interface in indentation test.Their low debond energy at the interface,which were comparable to those of Py C or BN,satisfied the well-recognized interfacial debond and crack deflection criteria for CMCs.The interface was strengthened by atomic bonding in model composite sintered at 1450℃,leading to crack penetrating into Si C fiber and high debond energy.The strong interface may be promising in Si Cf/Si C CMC to withstand higher combustion temperature,because Yb2Si2O7 will provide plastic deformation capacity,which would serve as weak interphase for crack deflection and energy dissipation.Therefore,it is possible to design the capability of Si Cf/RE2Si2O7 interface for different requirements by adjusting interfacial strength or debond energy to reach optimal mechanical fuse mechanism in SiCf/SiC CMC.  相似文献   

13.
A novel method to determine the fiber-matrix interfacial properties of ceramic matrix composites is proposed and evaluated; where micro-pillar samples containing inclined fiber/matrix interfaces were prepared from a SiC fiber-reinforced SiC matrix composites and then compression-tested using the nano-indentation technique. This new test method employs a simple geometry and mitigates the uncertainties associated with complex stress state in the conventional single-filament push-out method or tensile unloading–reloading hysteresis loop analysis method for the determination of interfacial properties. Based on the test results using samples with different interface orientations, the interfacial debond shear strength and the internal friction coefficient are explicitly determined and compared with values obtained by other test methods. SEM observation showed that micro compression caused an adhesive type of debonding between the fiber and the pyrolytic carbon interface. The results suggest that the debonding/failure behavior of the micro-pillars followed the Coulomb fracture criterion. The determined interfacial debond shear strength is ~100 MPa, which appears to be smaller than that determined from fiber push-out test for similar composite systems. The difference can be explained by the effect of normal stress (clamping stress) on the apparent interfacial debond shear strength.  相似文献   

14.
Interfacial fracture toughness measurements of thin film-substrate systems are of importance in many applications. In the microelectronics industry, the interfacial adhesion between the dielectric-barrier-metal layers on a semiconductor chip is critical for chip reliability. In this paper, we propose a thermally-driven patterned buckling delamination test that does not use a pre-existing weak interface. The test relies on causing a patterned film to debond from its substrate by inducing a compressive stress due to heating of the film on a thick silicon substrate. The compressive stress causes the film to buckle and debond from the substrate. A model for the propagation of the buckling-induced debond is then developed to estimate interfacial fracture toughness. The efficacy of the thermally-driven buckling test is demonstrated on a model Al/SU8/Si film-substrate system wherein the Al film debonds along its interface to SU8. The interfacial toughness of the Al/SU8 interface is estimated using the proposed test and is compared to the toughness for the same system obtained using an alternative test with a weakened interface to validate the developed elastic-plastic model for buckling-induced debond propagation.  相似文献   

15.
An investigation has been undertaken of the stress distributions in high-performance polyethylene fibres bridging cracks in model epoxy composites. The axial fibre stress has been determined from stress-induced Raman band shifts and the effect of fibre surface treatment has been followed using untreated and plasma-treated polyethylene fibres. It is found that when the specimen is cracked, the fibres do not break and stress is transmitted from the matrix to the fibre across the fibre/matrix interface. A debond propagates along the fibre/matrix interface accompanied by friction along the debonded interface. The axial stress distributions in the fibres can be analysed using a partial-debonding model based upon shear-lag theory and it is found that the maximum interfacial shear stress at the bond/debond transition is a function of the debond length. The debonding process has been modelled successfully in terms of the interfacial fracture energy-based criterion developed by Hsueh for the propagation of a debond along a fibre/matrix interface accompanied by constant friction along the interface.  相似文献   

16.
A modified single fiber fragmentation test (SFFT) procedure, that permits separation of the fiber break and fiber/matrix (F/M) debond propagation events, was employed to characterize the (F/M) interface toughness of dry and water saturated E-glass/vinylester. By focusing solely on the debond propagation event, and by measuring the critical load for debond propagation, fracture mechanic analysis enabled determination of the fracture toughness of the fiber/matrix interface. After immersion in seawater, the interface was substantially degraded. The fracture toughness was reduced by approximately a factor of two.  相似文献   

17.
In this paper, the synergistic effects of temperatrue and oxidation on matrix cracking in fiber-reinforced ceramic-matrix composites (CMCs) has been investigated using energy balance approach. The shear-lag model cooperated with damage models, i.e., the interface oxidation model, interface debonding model, fiber strength degradation model and fiber failure model, has been adopted to analyze microstress field in the composite. The relationships between matrix cracking stress, interface debonding and slipping, fiber fracture, oxidation temperatures and time have been established. The effects of fiber volume fraction, interface properties, fiber strength and oxidation temperatures on the evolution of matrix cracking stress versus oxidation time have been analyzed. The matrix cracking stresses of C/SiC composite with strong and weak interface bonding after unstressed oxidation at an elevated temperature of 700 °C in air condition have been predicted for different oxidation time.  相似文献   

18.
Application of the single-fiber composite (sfc) tension test for fiber and interface strength determination is discussed. Fiber breaking and fiber/matrix debond propagation are modelled by Poisson processes. Fiber fragment length distribution as well as debond length dependency upon the applied stress are derived and their interrelation revealed.

Acoustic emission monitoring of the sfc during a test is utilized to obtain the dependency of mean fragment length upon stress and consequently on the Weibull distribution shape and scale parameters. Excellent agreement with data obtained by notoriously complicated conventional fiber tests is observed.  相似文献   


19.
The tensile strength and associated failure micromechanisms have been characterized for a SiC fibrereinforced ceramic matrix composite subject to strain rates approaching 1000 s–1. It is found that behaviour under such conditions is not described by the current matrix fracture/fibre pull-out models. This is a consequence of the rapid and extreme frictional heating produced at the fibre-matrix interface by sliding velocities on the order of 100 ms–1. At sufficiently rapid loading rates, the near-interface matrix appears to melt, and the frictional interface shear resistance is reduced to the point that the fibres debond throughout the specimen, and pull out without failing. This suggests that for sufficiently rapid loading, the stress to fail the composite will approach that merely to create the initial matrix crack, i.e., a stress level well below the ultimate strength normally attainable under quasi-static conditions.  相似文献   

20.
An analytical method has been developed to investigate the effect of interface wear on the tensile strength of carbon fiber ? reinforced ceramic ? matrix composites (CMCs) under multiple fatigue loading. The Budiansky ? Hutchinson ? Evans shear ? lag model was used to describe the micro stress field of the damaged composite considering fibers failure and the difference existed in the new and original interface debonded region. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The interface shear stress degradation model and fibers strength degradation model have been adopted to analyze the interface wear effect on the tensile strength of the composite subjected to multiple fatigue loading. Under tensile loading, the fibers failure probabilities were determined by combining the interface wear model and fibers failure model based on the assumption that the fiber strength is subjected to two ? parameter Weibull distribution and the loads carried by broken and intact fibers satisfy the Global Load Sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength corresponding to multiple fatigue peak stress levels and different cycle number have been analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号