首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
多晶硅太阳电池以其价格低廉的优势成为低成本太阳电池的首选,但其光电转换效率提升空间有限。钝化发射极和背面电池(PERC)技术是当前晶硅太阳电池提效的主要途径。多晶PERC电池结合了多晶硅电池的低成本和PERC电池的高效,是当前多晶硅电池的研究热点。本文研究了多晶PERC电池的背面和正面结构优化与设计,提出了提高多晶PERC电池效率的产业化技术方法。通过在硅片背面用三层SiNx:H薄膜来代替常规双层SiNx:H薄膜,在保证优良的背面钝化的同时,使电池长波响应得到改善,电池光电转换效率由20.19% 提升至20.26%。优化多晶PERC电池的背面激光开窗工艺,使多晶电池效率较常规工艺提升0.11%。而在多晶PERC电池的正面叠加选择性发射极技术,可较常规工艺提升电池效率0.10%。综合运用多种提效手段有利于保持多晶PERC电池的竞争力。  相似文献   

2.
P-type microcrystalline silicon (μc-Si (p)) on n-type crystalline silicon (c-Si(n)) heterojunction solar cells is investigated. Thin boron-doped μc-Si layers are deposited by plasma-enhanced chemical vapor deposition on CZ-Si and the Voc of μc-Si/c-Si heterojunction solar cells is higher than that produced by a conventional thermal diffusion process. Under the appropriate conditions, the structure of thin μc-Si films on (1 0 0), (1 1 0), and (1 1 1) CZ-Si is ordered, so high Voc of 0.579 V is achieved for 2×2 cm2 μc-Si/multi-crystalline silicon (mc-Si) solar cells. The epitaxial-like growth is important in the fabrication of high-efficiency μc-Si/mc-Si heterojunction solar cells.  相似文献   

3.
Photovoltaics is already a billion dollar industry. It is experiencing rapid growth as concerns over fuel supplies and carbon emissions mean that governments and individuals are increasingly prepared to ignore its current high costs. It will become truly mainstream when its costs are comparable to other energy sources. At the moment, it is around four times too expensive for competitive commercial production. Three generations of photovoltaics have been envisaged that will take solar power into the mainstream. Currently, photovoltaic production is 90% first-generation and is based on silicon wafers. These devices are reliable and durable, but half of the cost is the silicon wafer and efficiencies are limited to around 20%. A second generation of solar cells would use cheap semiconductor thin films deposited on low-cost substrates to produce devices of slightly lower efficiency. A number of thin-film device technologies account for around 5–6% of the current market. As second-generation technology reduces the cost of active material, the substrate will eventually be the cost limit and higher efficiency will be needed to maintain the cost-reduction trend. Third-generation devices will use new technologies to produce high-efficiency devices. Advances in nanotechnology, photonics, optical metamaterials, plasmonics and semiconducting polymer sciences offer the prospect of cost-competitive photovoltaics. It is reasonable to expect that cost reductions, a move to second-generation technologies and the implementation of new technologies and third-generation concepts can lead to fully cost-competitive solar energy in 10–15 years.  相似文献   

4.
Using upgraded metallurgical-grade silicon (UMG-Si) is a cost-effective and energy-efficient approach for the production of solar cells. Grain boundaries (GBs) play a major role in determining the device performance of multicrystalline Si (mc-Si) solar cells. In this study two UMG-Si wafers, one from the middle part of a brick and the other from the top part of the same brick, were investigated. An excellent correlation was found between the grain misorientation and the corresponding optical response of GBs as indicated by photoluminescence (PL) imaging, electron backscattered diffraction (EBSD), and cross-sectional transmission electron microscopy (TEM). In addition, the PL features at random GBs depend also on the impurity levels in the wafer. In particular the PL emission was greatly enhanced in the narrow regions close to the random GB in the top wafer, which is an interesting phenomenon that may have potential application in high efficiency light-emission diodes (LEDs) based on Si.  相似文献   

5.
Alkali etchant cannot produce uniformly textured surface to generate satisfactory open circuit voltage as well as the efficiency of the multi-crystalline silicon (mc-Si) solar cell due to the unavoidable grain boundary delineation with higher steps formed between successive grains of different orientations during alkali etching of mc-Si. Acid textured surface formed by using chemicals with HNO3–HF–CH3COOH combination generally helps to improve the open circuit voltage but always gives lower short circuit current due to high reflectivity. Texturing mc-Si surface without grain boundary delineation is the present key issue of mc-Si research. We report the isotropic texturing with HF–HNO3–H2O solution as an easy and reliable process for mc-Si texturing. Isotropic etching with acidic solution includes the formation of meso- and macro-porous structures on mc-Si that helps to minimize the grain-boundary delineation and also lowers the reflectivity of etched surface. The study of surface morphology and reflectivity of different mc-Si etched surfaces has been discussed in this paper. Using our best chemical recipe, we are able to fabricate mc-Si solar cell of 14% conversion efficiency with PECVD AR coating of silicon nitride film. The isotropic texturing approach can be instrumental to achieve high efficiency in mass production using relatively low-cost silicon wafers as starting material with the proper optimization of the fabrication steps.  相似文献   

6.
Crystalline silicon wafers are by far the dominant absorber materials for today's production of solar cells and modules due to their good price/performance relation and their proven environmental stability. These wafers are mainly produced either by a solar-optimized Czochralski (Cz)-growth method yielding crystalline silicon with low defect density (c-Si) or by a directional solidification or a ribbon growth method yielding large grained multi-crystalline (mc-Si) wafers with higher defect density. To further improve the price/performance relation of Cz solar cells, tri-crystalline silicon (tri-Si) is being developed as a high-quality wafer material that combines both the high diffusion length of minority carriers of up to 1300 μm of c-Si and the productivity of mc-Si. More than 1000 μm LID free diffusion length could be reached with specially doped tri-crystals. Due to an increased mechanical stability tri-Si allows both quasi-continuous pulling and thin slicing with higher mechanical yields. This paper reviews the structural, electronic, and mechanical properties of tri-crystalline silicon wafers with respect to c-Si wafers for solar applications. Actual non-textured solar cells processed with a simple cost effective fabrication process exhibit the same cell efficiencies up to 15.9% for both tri-silicon and mono-silicon wafers. With an improved process, up to 18% cell efficiency can be obtained with textured mono-Si.  相似文献   

7.
Double porous silicon (d-PS) layers formed by acid chemical etching on a top surface of n+/p multi-crystalline silicon solar cells were investigated with the aim to improve the performance of standard screen-printed silicon solar cells. First a macro-porous layer is formed on mc-Si. The role of this layer is texturization of surface. Next, the cells have been manufactured using standard technology based on screen-printing metallization. Finally, a second mezo-porous layer in n+ emitter of cell has been produced. The role of this PS layer is to serve as an antireflection coating. In this way, we have obtained d-PS layers on these solar cells. The paper present observation of d-PS microstructure with SEM as well as measurements of its effective reflectance at the level of 2.5% in the 400–1000 nm length wave range. The efficiency of the solar cells with this structure is about 12%.  相似文献   

8.
Photovoltaic properties of buried metallic contacts (BMCs) with and without application of a front porous silicon (PS) layer on multicrystalline silicon (mc-Si) solar cells were investigated. A Chemical Vapor Etching (CVE) method was used to perform front PS layer and BMCs of mc-Si solar cells. Good electrical performance for the mc-Si solar cells was observed after combination of BMCs and thin PS films. As a result the current-voltage (I-V) characteristics and the internal quantum efficiency (IQE) were improved, and the effective minority carrier diffusion length (Ln) increases from 75 to 110 μm after BMCs achievement. The reflectivity was reduced to 8% in the 450-950 nm wavelength range. This simple and low cost technology induces a 12% conversion efficiency (surface area = 3.2 cm2). The obtained results indicate that the BMCs improve charge carrier collection while the PS layer passivates the front surface.  相似文献   

9.
Cast multicrystalline silicon (mc-Si) solar cell technology, accounted for nearly 41% of all the PV modules manufactured worldwide in 2000. Since 1995 the use of cast mc-Si as a substrate has increased every year and that increase is expected to accelerate in the coming years as the PV market grows further. This impressive growth has been enabled by several factors—wafer suppliers, improvements in casting technology, sawing technology and cell process technology. In this paper the enabling factors will be discussed. The new processes used to enhance the efficiency of the cast multicrystalline silicon solar cells and the criteria for technology transfer will also be discussed.  相似文献   

10.
Thin-film solar cells offer the most promising options for substantially reducing the cost of photovoltaic systems. A multiplicity of options, in terms of materials and devices, are currently being developed worldwide. Some of the leading contenders are: amorphous and polycrystalline silicon, compound semiconductor thin films such as CuInSe2-based alloys, and CdTe thin-film solar cells. Enormous progress in device performance has been made in most of these technologies, and considerable effort is devoted to commercialization of these technologies. Exciting new developments are happening in some relatively new materials and devices.  相似文献   

11.
In this work we analyse the effect of porous silicon on the performances of multicrystalline silicon (mc-Si) solar cells during the porous silicon-based gettering procedure. This procedure consists of forming PS layers on both front and back sides of the mc-Si wafers followed by an annealing in an infrared furnace under a controlled atmosphere at different temperatures. Three sets of samples (A, B and C) have been prepared; for samples A and B, the PS films were removed before and after annealing, respectively. In order to optimize the annealing temperature, we measure the defect density at a selected grain boundary (GB) using the dark current–voltage (IV) characteristics across the GB itself. The annealing temperature was optimized to 1000 °C. The effect of these treatments on the performances of mc-Si solar cells was studied by means of the current–voltage characteristic (at AM 1.5) and the internal quantum efficiency (IQE). The results obtained for cell A and cell B were compared to those obtained on a reference cell (C).  相似文献   

12.
Multicrystalline silicon solar cells with porous silicon emitter   总被引:3,自引:0,他引:3  
A review of the application of porous silicon (PS) in multicrystalline silicon solar cell processes is given. The different PS formation processes, structural and optical properties of PS are discussed from the viewpoint of photovoltaics. Special attention is given to the use of PS as an antireflection coating in simplified processing schemes and for simple selective emitter processes as well as to its light trapping and surface passivating capabilities. The optimization of a PS selective emitter formation results in a 14.1% efficiency mc-Si cell processed without texturization, surface passivation or additional ARC deposition. The implementation of a PS selective emitter into an industrially compatible screenprinted solar cell process is made by both the chemical and electrochemical method of PS formation. Different kinds of multicrystalline silicon materials and solar cell processes are used. An efficiency of 13.2% is achieved on a 25 cm2 mc-Si solar cell using the electrochemical technique while the efficiencies in between 12% and 13% are reached for very large (100–164 cm2) commercial mc-Si cells with a PS emitter formed by chemical method.  相似文献   

13.
The purpose of this paper is to validate plan of R&D on solar cells in the (New-) Sunshine Program of Japan by using cost-effectiveness analysis and to demonstrate usefulness of the analysis for R&D planning. Based on the analysis, R&D goals and/or allocation of R&D expenditure of multicrystalline silicon (mc-Si) might not be appropriate after FY1996. And R&D expenditure for solar cells might be decided without forecasting increase of the mc-Si solar cell production by the subsidization programs.  相似文献   

14.
J.J. Hanak 《Solar Energy》1979,23(2):145-147
A monolithic solar cell panel has been fabricated using hydrogenated amorphous silicon (a-Si:H) as the semiconductor material. This device consists of a plate glass substrate bearing a number of long, narrow, parallel cells electrically connected in series along the lengths of the cells. It features several characteristics which make it uniquely attractive for large area devices (up to several m2): low internal power losses, due to lower current at a higher voltage; high fraction of active cell area, due to the absence of metallic grids; no basic device size limit; low cost and ease of fabrication. A device consisting of 9 cells and having an active area of 36 cm2, open circuit voltage of 6.5 V and efficiency of 2.6 per cent is described.  相似文献   

15.
Recent advances in solar cell device technologies are surveyed, and a new trend underlying is predicted by a term “technological evolution from the bulk crystalline age to the multilayered thin film age”. In the paper, firstly, recent progress of thin film fabrication technologies for active materials of photovoltaic device are reviewed, and their significancies such as wide area, low temperature growth etc., are pointed out from currently developed live technologies. Secondly, some R & D efforts to develop the next generation type solar cells utilized by full use of multi-layers thin film growth technology are introduced together with some newly developed integrated process technology for the thin film solar cells. Then, some topics in the high cost performance multi-layers thin film solar cells are also introduced. In the final part of this paper, the current state of the art in the field of thin film solar cells and their industrialization are overviewed and the market expansion toward the 21st century is forecast, and discussed.  相似文献   

16.
A planar rear emitter back contact silicon heterojunction (PreBC-SHJ) solar cell design is presented, which combines the advantages of different high efficiency concepts using point contacts, back contacts, and silicon heterojunctions. Electrically insulated point or stripe contacts to the solar cell absorber are embedded within a planar hydrogenated amorphous silicon emitter layer deposited at low temperature on the rear side. The new solar cell design requires less structuring and allows large structure sizes, enabling the use of low-cost patterning technologies such as inkjet printing or screen printing. By means of numerical computer simulation the efficiency potential of back contacted heterojunction solar cells is shown to exceed 24%. First PreBC-SHJ solar cells have been realized and exhibit higher short circuit currents than our state-of-the-art front contacted silicon heterojunction reference solar cells.  相似文献   

17.
New combined gettering and passivating procedures for solar cells prepared from multicrystalline silicon (mc-Si) have been considered. Passivation has been performed by (i) diamond-like carbon films deposition onto front or rear side of the wafers with following annealing, or (ii) hydrogen plasma treatments. Gettering region has been formed by deposition of Al film on specially prepared Si with developed surface. The advantages of such a gettering process in comparison with traditional gettering with Al are demonstrated. The improving influence of the treatments on diffusion length in mc-Si and efficiency of prepared solar cells have been found out. Physical mechanisms responsible for the observed effects of gettering and passivation are discussed.  相似文献   

18.
Effect of heat treatment on carbon in cast multicrystalline silicon (mc-Si) has been studied by means of Fourier Transmission Infrared Spectroscopy. Carbon is found to be involved in the formation of as-grown precipitates in mc-Si with higher oxygen content. The experimental results reveal that carbon is difficult to precipitate in mc-Si with lower oxygen or higher nitrogen concentration during annealing in the temperature range from 450°C to 1150°C. Carbon can enhance the nucleation of oxygen precipitates at lower temperature (<850°C). Although carbon does not affect the amount of oxygen precipitates at higher temperature (>950°C), it is suggested that carbon diffuses into oxygen precipitates by the enhancement of silicon self-interstitials. The experiments point out that preannealing at 750°C enhances the decrease of substitute carbon concentration during subsequent annealing at 1050°C. Dislocations and grain boundaries in mc-Si do not affect carbon thermal treatment properties.  相似文献   

19.
Lifetime of minority carriers has been widely identified to be the key material parameter determining the conversion efficiency of pn-junction silicon solar cells. Impurities and defects in the silicon crystal lattice reduce the charge carrier lifetime and thus limit the performance of the solar cells. Removal of impurities by silicon material purification is often contradictory with low cost production of photovoltaic devices. In this paper, we present experimental results of an efficient gettering technique which can be applied to low cost processing of multicrystalline silicon solar cells without any additional process steps or compromises with optimal device design parameters. This technique is based on well-known phosphorous gettering. We have discovered that if the silicon wafers are kept in the furnace after the emitter diffusion at the 700°C, significant improvement in the lifetime will take place. At this temperature the properties of the pn-junction remain unaffected meanwhile many lifetime killers are still mobile. The time needed for this temperature program can be easily modified in order to respond to the material quality variations in substrates originating from different parts of multicrystalline ingot. Better control of lifetime can lead to higher degree of starting material utilization.  相似文献   

20.
Surface texturing of crystalline silicon wafer improves the conversion efficiency of solar cells by the enhancement in antireflection property and light trapping. Compared to antireflection coating, it is a more permanent and effective scheme. Wet texturing with the chemicals such as alkali (NaOH, KOH) or acid (HF, HNO3, CH3COOH) is too difficult for thinner wafer to apply due to a large amount of silicon loss. However, Plasma surface texturing using Reactive Ion Etching (RIE) can be effective in reducing the surface reflectance with low silicon loss. In this study, we have fabricated a large-area (156×156 mm) multicrystalline silicon (mc-Si) solar cell by mask less surface texturing using a SF6/O2 reactive ion etching. We have accomplished texturing with RIE by reducing silicon loss by almost half of that in wet texturing process. By optimizing the processing steps, we achieved conversion efficiency, open circuit voltage, short circuit current density, and fill factor as high as 16.1%, 619 mV, 33.5 mA/cm2, and 77.7%, respectively. This study establishes that it is possible to fabricate the thin multicrystalline silicon solar cells of low cost and high efficiency using surface texturing by RIE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号