首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The number of users that can be supported by frequency-hopped, spread-spectrum multiple-access systems can be increased greatly by using multiuser demodulation and iterative decoding. In the receiver employed hard-decision multiuser demodulation followed by iterative decoding, users exchange decoded information with each other. Additional information from multiuser demodulation in the first decoding iteration is limited by the hard-decision output of the multiuser demodulator. The error-correction used was an errors-and-erasures Reed-Solomon (RS) decoder. We revisit hard-decision demodulation and conventional RS decoding. Hard-decision multiuser demodulation is modified to provide a soft output, which is then given to a nonbinary block turbo code with shortened RS codes as the constituent codes. An iterative multiuser decoding algorithm is developed to do soft multiuser interference cancellation. This soft receiver with soft demodulation and decoding is shown to be more resistant to multiuser interference and channel noise, especially at lower values of signal-to-noise ratio. The results show a great improvement in the ability of the system to support more users (more than three times in some cases), as compared with systems that erase all hits or employ hard-decision multiuser demodulation followed by RS code. We examine the proposed method for synchronous as well as asynchronous frequency-hopped systems in both AWGN and fading channels.  相似文献   

2.
In this paper, a turbo receiver structure is proposed for the uplink of coded code-division multiple-access (CDMA) systems in the presence of unknown users. The proposed receiver consists of two stages following each other. The first stage performs soft interference cancellation and group-blind linear minimum mean square error (MMSE) filtering, and the second stage performs channel decoding. The proposed group-blind linear MMSE filter suppresses the residual multiple-access interference (MAI) from known users based on the spreading sequences and the channel characteristics of these users while suppressing the interference from other unknown users using a subspace-based blind method. The proposed receiver is suitable for suppressing intercell interference in heavily loaded CDMA systems. Since the knowledge of the number of unknown users is crucial for the proposed receiver structure, a novel estimator is also proposed to estimate the number of unknown users in the system by exploiting the statistical properties of the received signal. Simulation results demonstrate that the proposed estimator can provide the number of unknown users with high accuracy; in addition, the proposed group-blind receiver integrated with the new estimator can significantly outperform the conventional turbo multiuser detector in the presence of unknown users.   相似文献   

3.
Iterative receivers for multiuser space-time coding systems   总被引:8,自引:0,他引:8  
Space-time coding (STC) techniques, which combine antenna array signal processing and channel coding techniques, are very promising approaches to substantial capacity increase in wireless channels. Multiuser detection techniques are powerful signal processing methodologies for interference suppression in CDMA systems. In this paper, by drawing analogies between a synchronous CDMA system and an STC multiuser system, we study the applications of some multiuser detection methods to STC multiuser systems. Specifically, we show that the so-called “turbo multiuser detection” technique, which performs soft interference cancellation and decoding iteratively, can be applied to STC multiuser systems in flat-fading channels. An iterative multiuser receiver and its projection-based variants are developed for both the space-time block coding (STBC) system and the space-time trellis coding (STTC) system. During iterations, extrinsic information is computed and exchanged between a soft multiuser demodulator and a bank of MAP decoders, to achieve successively refined estimates of the users' signals. Computer simulations demonstrate that the proposed iterative receiver techniques provide significant performance improvement over conventional noniterative methods in both single-user and multiuser STC systems. Furthermore, the performance of the proposed iterative multiuser receiver approaches that of the iterative single-user receiver in both STBC and STTC systems  相似文献   

4.
We derive a low-complexity receiver scheme for joint multiuser decoding and parameter estimation of code division multiple access signals. The resulting receiver processes the users serially and iteratively and makes use of soft-in soft-out single-user decoders, of soft interference cancellation and of expectation-maximization parameter estimation as the main building blocks. Computer simulations show that the proposed receiver achieves near single-user performance at very high channel load (number of users per chip) and outperforms conventional schemes with similar complexity  相似文献   

5.
A soft iterative multisensor array receiver for coded multiuser wideband code-division multiple-access wireless uplink channels is proposed, such channels are typically both frequency- and time-selective. A new equivalent discrete-time synchronous representation is used to model asynchronous multiuser dispersive channels that employ, in general, random spreading. The proposed scheme suppresses multiuser interference over a wide range of user signal powers, by iteratively exchanging soft information between a minimum mean-square-error (MMSE) multiuser demodulator and a bank of single-user decoders, feeding back the outputs of the latter to aid in soft multiuser multisensor MMSE-RAKE demodulation and subtractive interference cancellation, in the second and subsequent iterations. It displays near-far resistance since it behaves like a successive interference subtracter across iterations. The array responses are obtained via a multipass estimation scheme that uses both (temporal) pilot symbols and soft estimates fed back from the decoders to effectively provide multisymbol pilot signals and thence successively refined estimates with increasing iterations, while seeking neither to rely on the array geometry nor to estimate the directions from which users' signals arrive at the receiver. Simulation studies indicate that this scheme performs close to the single-user case with a two-sensor receiver array, and perfect channel state information, after four iterations; alternatively, it allows significantly increased user capacity compared with conventional receivers, and suffers only a modest loss with estimated array responses  相似文献   

6.
In this paper we propose minimum mean squared error (MMSE) iterative successive parallel arbitrated decision feedback (DF) receivers for direct sequence code division multiple access (DS-CDMA) systems. We describe the MMSE design criterion for DF multiuser detectors along with successive, parallel and iterative interference cancellation structures. A novel efficient DF structure that employs successive cancellation with parallel arbitrated branches and a near-optimal low complexity user ordering algorithm are presented. The proposed DF receiver structure and the ordering algorithm are then combined with iterative cascaded DF stages for mitigating the deleterious effects of error propagation for convolutionally encoded systems with both Viterbi and turbo decoding as well as for uncoded schemes. We mathematically study the relations between the MMSE achieved by the analyzed DF structures, including the novel scheme, with imperfect and perfect feedback. Simulation results for an uplink scenario assess the new iterative DF detectors against linear receivers and evaluate the effects of error propagation of the new cancellation methods against existing ones.  相似文献   

7.
The presence of both multiple-access interference (MAI) and intersymbol interference (ISI) constitutes a major impediment to reliable communications in multipath code-division multiple-access (CDMA) channels. In this paper, an iterative receiver structure is proposed for decoding multiuser information data in a convolutionally coded asynchronous multipath DS-CDMA system. The receiver performs two successive soft-output decisions, achieved by a soft-input soft-output (SISO) multiuser detector and a bank of single-user SISO channel decoders, through an iterative process. At each iteration, extrinsic information is extracted from detection and decoding stages and is then used as a priori information in the next iteration, just as in turbo decoding. Given the multipath CDMA channel model, a direct implementation of a sliding-window SISO multiuser detector has a prohibitive computational complexity. A low-complexity SISO multiuser detector is developed based on a novel nonlinear interference suppression technique, which makes use of both soft interference cancellation and instantaneous linear minimum mean-square error filtering. The properties of such a nonlinear interference suppressor are examined, and an efficient recursive implementation is derived. Simulation results demonstrate that the proposed low complexity iterative receiver structure for interference suppression and decoding offers significant performance gain over the traditional noniterative receiver structure. Moreover, at high signal-to-noise ratio, the detrimental effects of MAI and ISI in the channel can almost be completely overcome by iterative processing, and single-user performance can be approached  相似文献   

8.
Space-time turbo equalization in frequency-selective MIMO channels   总被引:11,自引:0,他引:11  
A computationally efficient space-time turbo equalization algorithm is derived for frequency-selective multiple-input-multiple-output (MIMO) channels. The algorithm is an extension of the iterative equalization algorithm by Reynolds and Wang (see Signal Processing, vol.81, no.5, p.989-995, 2001) for frequency-selective fading channels and of iterative multiuser detection for code-division multiple-access (CDMA) systems by Wang and Poor (see IEEE Trans. Commun., vol.47, p.1046-1061, 1999). The proposed algorithm is implemented as a MIMO detector consisting of a soft-input-soft-output (SISO) linear MMSE detector followed by SISO channel decoders for the multiple users. The detector first forms a soft replica of each composite interfering signal using the log likelihood ratio (LLR), fed back from the SISO channel decoders, of the transmitted coded symbols and subtracts it from the received signal vector. Linear adaptive filtering then takes place to suppress the interference residuals: filter taps are adjusted based on the minimum mean square error (MMSE) criterion. The LLR is then calculated for adaptive filter output. This process is repeated in an iterative fashion to enhance signal-detection performance. This paper also discusses the performance sensitivity of the proposed algorithm to channel-estimation error. A channel-estimation scheme is introduced that works with the iterative MIMO equalization process to reduce estimation errors.  相似文献   

9.
We compute the throughput of some multiaccess wireless systems for delay-tolerant data communications, characterized by an infinite population of uncoordinated users accessing a common channel. The channel is affected by block fading, and the channel state is perfectly known to the receiver but unknown to the transmitters. To cope with multiaccess interference (MAI) and fading, the users employ retransmission of erroneously received packets. We consider unspread and randomly spread (code-division multiple-access (CDMA)) systems with decentralized (single-user) decoding and a system where the receiver employs joint multiuser decoding. The following conclusions can be drawn from our analysis: (a) unspread systems with packet retransmission outperforms CDMA systems with conventional detection, but are outperformed by CDMA with linear minimum mean-square error (MMSE) detection. (b) For all systems based on single-user decoding (SUD), there exists a threshold value of (E/sub b//N/sub o/) below which the throughput is maximized by an infinite number of users per dimension transmitting at vanishing rate, and above which the throughput is maximized by a finite average number of users per dimension transmitting at nonvanishing rate. Moreover, as (E/sub b//N/sub o/) increases, the optimal average number of users per dimension tends to one. In this sense, we say that the optimized systems "self-orthogonalize." (c) For the system based on joint multiuser decoding, a simple slotted ALOHA strategy is able to recover the throughput penalty due to fading in the limit for high (E/sub b//N/sub o/), while an incremental redundancy (INR) strategy recovers the fading penalty for any (E/sub b//N/sub o/).  相似文献   

10.
We study multiuser receiver design and analysis for synchronous code-division multiple-access (CDMA) channels with time-varying Rayleigh fading. Starting from an error probability criterion, we first derive a near-optimum receiver for this channel that admits a detector-estimator decomposition, has certain asymptotic optimality properties and a complexity which is independent of the length of the observation interval. The performance of this detector is analytically characterized and contrasted with that of the optimal multiuser detector for the time-invariant (or static) CDMA Rayleigh-fading channel when it is implemented over the time-varying channel. Notable among our conclusions is the fact that, unlike the static channel multiuser detector, the time-varying channel detector is able to withstand not only the estimated interference from the other system users, but also, the residual interference (that cannot be estimated) arising out of imperfect estimation of the interferer fading parameters. Using estimation error covariance information, this detector shows flexibility in accommodating a wide range of interferer fading conditions  相似文献   

11.
The optimal decoding of vector quantization (VQ) over a code-division multiple-access (CDMA) channel is too complicated for systems with a medium-to-large number of users. This paper presents a low-complexity, suboptimal decoder for VQ over a CDMA channel. The proposed decoder is built from a soft-output multiuser detector, a soft bit estimator, and the optimal soft VQ decoding of an individual user. Simulation results obtained over both additive white Gaussian noise and flat Rayleigh fading channels show that with a lower complexity and good performance, the proposed decoding scheme is an attractive alternative to the more complicated optimal decoder.  相似文献   

12.
A novel multiuser separation and equalization scheme is proposed for single carrier wireless communication systems integrating frequency-domain (FD) multiuser turbo equalization (MUTE) and successive interference cancellation (SIC). The proposed iterative structure consists of multiple layers of detection, and at each layer the user with strongest power is processed by a frequency-domain multiuser equalizer to yield the soft extrinsic information on the coded bits of that user, which is delivered to a channel decoder after deinterleaving. The extrinsic information gleaned by the decoder is fed back to both the current and previous multiuser equalizers for the next iteration as a-priori information. The soft symbols of the current user are evaluated by the a-posteriori information of coded bits provided by the multiuser equalizer, and the interference reconstructed by the current user’s soft symbols is canceled out from the received signals in frequency domain. The interference-canceled signals are fed forward to subsequent layers for detection of other users. The proposed scheme effectively mitigates multiple access interference and intersymbol interference by an iterative (turbo) detection method. Numerical simulation examples demonstrate that the proposed FD MUTE with SIC outperforms the traditional MMSE multiuser equalizer over the severely doubly-selective channels, and the bit-error-rate performance tends to be better with the increase of iterations.  相似文献   

13.
The problems of channel estimation and multiuser detection for direct sequence code division multiple access (DS/CDMA) systems employing long spreading codes are considered. With regard to channel estimation, several procedures are proposed based on the least-squares approach, relying on the transmission of known training symbols but not requiring any timing synchronization. In particular, algorithms suited for the forward and reverse links of a single-rate DS/CDMA cellular system are developed, and the case of a multirate/multicode system, wherein high-rate users are split into multiple virtual low-rate users, is also considered. All of the proposed procedures are recursively implementable with a computational complexity that is quadratic in the processing gain, with regard to the issue of multiuser detection, an adaptive serial interference cancellation (SIC) receiver is considered, where the adaptivity stems from the fact that it is built upon the channel estimates provided by the estimation algorithm. Simulation results show that coupling the proposed estimation algorithms with a SIC receiver may yield, with a much lower computational complexity, performance levels close to those of the ideal linear minimum mean square error (MMSE) receiver, which assumes perfect knowledge of the channels for all of the users and which (in a long-code scenario) has a computational complexity per symbol interval proportional to the third power of the processing gain  相似文献   

14.
An adaptive receiver based on hybrid system theory is developed for a multiuser multiple-input multiple-output (MIMO) fading code-division multiple-access (CDMA) system. The basic idea is to treat the transmitted symbols and channel gains as unknown states (discrete and continuous) within a hybrid systems framework. The Bayesian-inference-based state estimation is derived using multiple model theory resulting in an optimal joint sequence estimator, which is shown to be intractable in its computational complexity. A suboptimal receiver (IMM-SIC) is then derived based on the well-known Interacting Multiple Model (IMM) algorithm and successive interference cancellation (SIC) scheme. This paper shows the specific approximations made to the probability densities of the optimal receiver in deriving the IMM-SIC receiver with complexity linear in number of users. This receiver design is well suited for online recursive processing of space-time coded CDMA system, where the decoding stage is incorporated within the multiple model framework.  相似文献   

15.
By introducing a full‐rate space–time coding (STC) scheme, a synchronous CDMA (code division multiple access) system with full‐rate STC is given, and the corresponding uplink performance is investigated in Rayleigh fading channel with imperfect estimation. Considering that existing STC‐CDMA system has high decoding complexity, low‐complexity multiuser receiver schemes are developed for perfect and imperfect estimations, respectively. The schemes can make full use of the complex orthogonality of STC to reduce the high decoding complexity of the existing scheme, and have linear decoding complexity compared with the existing scheme with exponential decoding complexity. Moreover, the proposed schemes can achieve almost the same performance as the existing scheme. Compared with full‐diversity STC‐CDMA, the given full‐rate STC‐CDMA can achieve full data rate, low complexity, and partial diversity, and form efficient spatial interleaving. Thus, the concatenation of channel coding can effectively compensate for the performance loss due to partial diversity. Simulation results show that the full‐rate STC‐CDMA has lower bit error rate (BER) than full‐diversity STC‐CDMA systems under the same system throughput and concatenation of channel code. Moreover, the system BER with imperfect estimation are worse than that with perfect estimation due to the estimation error, which implies that the developed multiuser receiver schemes are valid and reasonable. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Multiuser interference suppression in coded direct sequence code division multiple access (DS-CDMA) uplink channels is significantly impacted by the application of the turbo processing concept. This paradigm essentially involves the iterative exchange of soft information between a multiuser demodulator and a bank of single-user decoders, to their mutual benefit. The present work proposes a joint iterative minimum mean square error (MMSE) multiuser and narrowband interference suppressor for coded asynchronous DS-CDMA channels. Since the parameters of the narrowband interference are unknown a priori, the first iteration in this scheme is effectively just MMSE multiuser interference suppression. The outputs of all users' soft decoders (available at the end of each iteration) are fed back to subtract their (estimated) cumulative contribution from the received signal vector. The residue comprises the narrowband interference embedded in wideband noise, so that the former can be piecewise interpolated over chip intervals of appropriate duration, and then subtracted from the received signal, to provide a narrowband-interference-free input signal for the next iteration. The soft-decoded feedback estimates of the interferers' signals are used in each iteration also to perform soft MMSE multiuser interference suppression, in conjunction with subtractive interference cancellation. This scheme performs well at both low and high received signal powers, and displays the successive cancellation property across iterations, exhibiting good near-far resistance. Introducing multisensor arrays at the receiver relaxes the limitations imposed by the inherent suboptimality of MMSE multiuser demodulation, insofar as it enhances interuser separation, now in the spatial sense. Simulations indicate that the performance of the proposed technique surpasses that of all existing suboptimal algorithms in this context.  相似文献   

17.
The optimal decoding scheme for a code-division multiple-access (CDMA) system that employs convolutional codes results in a prohibitive computational complexity. To reduce the computational complexity, an iterative receiver structure was proposed for decoding multiuser data in a convolutional coded CDMA system. At each iteration, extrinsic information is exchanged between a soft-input/soft-output (SISO) multiuser detector and a bank of single-user SISO channel decoders. However, a direct implementation of the full-complexity SISO multiuser detector also has the exponential computational complexity in terms of the number of users. This paper proposes a low-complexity SISO multiuser detector based on tentative hard decisions that are made and fed back from the channel decoders in the previous iteration. The computational complexity of the proposed detector is linear in terms of the number of users and can be adjusted according to the complexity/performance tradeoff. Simulation results show that even with this simple feedback scheme, the performance of the coded multiuser system approaches that of the single-user system for moderate to high signal-to-noise ratios (SNRs)  相似文献   

18.
An iterative algorithm for joint decoding and channel estimation in frequency-hopping (FH) networks is proposed. In the proposed algorithm, soft decoder outputs are used in the iterative estimation of the time-varying variance of the additive interference resulting from the sum of the thermal noise, partial-band noise jamming, and other-user interference. The soft outputs are also used in the estimation of the independent random carrier phases and multiplicative Rayleigh fading coefficients in different frequency dwells. The estimation process is further enhanced through the insertion of known symbols in the transmitted data stream. The proposed iterative symbol-aided demodulation scheme is compared with the coherent scenario, where the channel state information is assumed to be known a priori at the receiver, for both convolutionally coded and turbo coded FH systems. The proposed iterative channel estimation approach is suited for slow FH systems where the channel dynamics are much slower than the hopping rate. This observation motivates the consideration of another robust approach for generating the log-likelihood ratios for fast hopping systems in additive white Gaussian noise channels. Simulation results that demonstrate the excellent performance of the proposed algorithms in various scenarios are also presented  相似文献   

19.
We develop an iterative multiuser receiver for decoding turbo-coded synchronous code-division multiple-access signals in both Gaussian and non-Gaussian noise. A soft-input soft-output nonlinear multiuser detector is combined with a set of single-user channel decoders in an iterative detection/decoding structure. The nonlinear multiuser detector utilizes the prior probabilities of each user's bits to form soft estimates used for multiple-access interference cancellation. The channel decoders perform turbo-code decoding and produce posterior probabilities which are fed back to the multiuser detector for use as prior probabilities. Simulation results show that the proposed multiuser receiver performs well in both Gaussian and non-Gaussian noise. In particular, single-user turbo-code performance can be approached within a few iterations with medium to low cross correlation (ρ⩽0.5)  相似文献   

20.
Blind adaptive minimum mean-squared errors (MMSE) receivers for multiuser direct-sequence code-division multiple access (DS-CDMA) systems that assume knowledge of the steering vector, i.e., the cross-correlation between the desired output and the input signal, are known for their robustness against channel fading as they do not attempt to explicitly track the channel of the user of interest. However, these receivers often have higher excess mean squared error and, hence, poorer performance than training-sequence based adaptive MMSE receivers. In this paper, an improved correlation matrix estimation scheme for blind adaptive MMSE receivers is provided. The new scheme takes advantage of the fact that the desired linear receiver can be expressed as a function of the interference correlation matrix only, rather than the total data correlation matrix. A theoretical analysis is performed for the flat fading case which predicts that the new estimation scheme will result in significant performance improvement. Blind adaptive MMSE receivers with the new estimation scheme appear to achieve performance comparable to the training-sequence based adaptive MMSE receivers. Detailed computer simulations for the fast multipath fading environment verify that the proposed scheme yields strong performance gains over previous methods  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号