首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Abstract— High‐quality SiO2 films have been fabricated at a substrate temperature of 300°C by utilizing a novel deposition method refered to as radical‐shower CVD (RS‐CVD), in which the substrates and material gases are completely separated from the plasma. On this account, SiO2 deposition is achievable without plasma damage and excessive decomposition of the material gases. The electrical characteristics of RS‐CVD SiO2 films are comparable to those of thermal SiO2. Furthermore, the compact parallel‐plate structure of RS‐CVD is suitable for large‐area deposition.  相似文献   

2.
Abstract— High‐quality ZnO thin films for transparent thin‐film transistors (TFTs) were successfully prepared by using an injection‐type source delivery system for atomic layer deposition (ALD). By using this delivery system, the source delivery pulse time was dramatically reduced to 0.002 sec to minimize processing time. The growth of ZnO thin film at a relatively low temperature of 150°C shows good characteristics. The process factors on the reactants for film growth were characterized. The bottom‐contact bottom‐gate ZnO TFT shows good electrical properties with solid saturation.  相似文献   

3.
Although the unique properties of chemical vapor deposition (CVD) diamond films have made it a candidate material for radiation detectors, the polycrystalline nature of the films has severely limited the development of CVD diamond detectors. In this work, three CVD diamond films with different microstructure were grown by using a hot-filament chemical vapor deposition (HFCVD) technique and were fabricated as CVD diamond detectors. The electric contact is good ohmic for bias voltage up to 150 V. 5.9 keV 55Fe X-ray was used to measure the photocurrent and the pulse height distribution (PHD). For the detector based on the best quality film, the dark-current of 16.0 nA and the net photocurrent of 15.9 nA are obtained at an electric field of 50 kV cm−1. The PHD peak is well separated from the noise pedestal, indicating a high counting efficiency and a low detection limit.  相似文献   

4.
Abstract— The state of the art of large‐area low‐temperature TFT‐LCDs will be reported in this paper. High‐performance poly‐Si TFTs are expected to realize various applications such as system display where various signal‐processing functions are added to the display. In the past few years, low‐temperature poly‐Si thin‐film‐transistor (LTPS TFT) technology has made great progress, especially in the areas of excimer laser annealing (ELA) of high‐quality poly‐Si film, ion doping for large‐area doping, and high‐quality gate SiO2 film formation by using the low‐temperature PE‐CVD method. Also, technology trends and possible applications, such as a system displays, will be discussed.  相似文献   

5.
Abstract— The synthesis of carbon‐nanotube (CNT) field emitters for FEDs by thermal chemical vapor deposition (CVD) and their structural and emission characterization are described. Multi‐walled nanotubes (MWNTs) were grown on patterned metal‐base electrodes by thermal CVD, and the grown CNTs formed a network structured layer covering the surfaces of the metal electrode uniformly, which realized uniform distribution of electron emission. A technique for growing narrow MWNTs was also developed in order to reduce the driving voltage. The diameter of MWNT depends on the growth temperature, and it has changed from 40 nm at the low temperature (675°C) to 10–15 nm at the high temperature (900–1000°C). Moreover, narrower MWNTs were grown by using the metal‐base electrode covered with a thin alumina layer and a metal catalyst layer. Double‐walled nanotubes (DWNTs) were also observed among narrow MWNTs. The emission from the narrow CNTs showed a low turn‐on electric field of 1.5 V/μm at the as‐grown layer.  相似文献   

6.
An 8‐in. flexible active‐matrix organic light‐emitting diode (AMOLED) display driven by oxide thin‐film transistors (TFTs) has been developed. In‐Ga‐Zn‐O (IGZO)‐TFTs used as driving devices were fabricated directly on a plastic film at a low temperature below 200 °C. To form a SiOx layer for use as the gate insulator of the TFTs, direct current pulse sputtering was used for the deposition at a low temperature. The fabricated TFT shows a good transfer characteristic and enough carrier mobility to drive OLED displays with Video Graphic Array pixels. A solution‐processable photo‐sensitive polymer was also used as a passivation layer of the TFTs. Furthermore, a high‐performance phosphorescent OLED was developed as a red‐light‐emitting device. Both lower power consumption and longer lifetime were achieved in the OLED, which used an efficient energy transfer from the host material to the guest material in the emission layer. By assembling these technologies, a flexible AMOLED display was fabricated on the plastic film. We obtained a clear and uniform moving color image on the display.  相似文献   

7.
Abstract— Direct deposition of indium tin oxide (ITO) thin film on color filters is of practical use in the fabrication of state‐of‐the‐art flat‐panel displays. Room‐temperature dc magnetron sputtering of thin‐film ITO and issues related to the integration of ITO‐on‐glass panels containing micro‐fabricated color filters and other functional materials have been investigated. The resulting polycrystalline ITO exhibited good adhesion to the underlying color filters, as well as good optical transparency and high electrical conductivity. Application of this ITO deposition technology to color liquid‐crystal and organic light‐emitting diode displays will also presented.  相似文献   

8.
Abstract— A complete poly‐Si thin‐film transistor (TFT) on plastic process has been optimized to produce TFT arrays for active‐matrix displays. We present a detailed study of the poly‐Si crystallization process, a mechanism for protecting the plastic substrate from the pulsed laser used to crystallize the silicon, and a high‐performance low‐temperature gate dielectric film. Poly‐Si grain sizes and the corresponding TFT performance have been measured for a range of excimer‐laser crystallization fluences near the full‐melt threshold, allowing optimization of the laser‐crystallization process. A Bragg reflector stack has been embedded in the plastic coating layers; its effectiveness in protecting the plastic from the excimer‐laser pulse is described. Finally, we describe a plasma pre‐oxidation step, which has been added to a low‐temperature (<100°C) gate dielectric film deposition process to dramatically improve the electrical properties of the gate dielectric. These processes have been integrated into a complete poly‐Si TFT on plastic fabrication process, which produces PMOS TFTs with mobilities of 66 cm2 /V‐sec, threshold voltages of ?3.5 V, and off currents of approximately 1 pA per micron of gate width.  相似文献   

9.
Abstract— In this article, a solution process for oxide thin‐film transistors (TFTs) at low‐temperature annealing was investigated. Solution‐process engineering, including materials and precursors, plays an important role in oxide thin‐film deposition on large glass and flexible substrates at low temperature. Reactive material could reduce the alloy reaction temperature for a multicomponent oxide system. A volatile precursor could also reduce annealing temperature in the formation of metal‐oxide thin films. A solution process with reactive Al and a volatile nitrate precursor can demonstrates competitive oxide TFTs at 350°C.  相似文献   

10.
The dependency of the chromaticity shifts on the concentration of Eu2+ doped in BaMgAl10O17 (BAM) was investigated under heat‐treatment and vacuum ultraviolet (VUV) irradiation. The Eu2+ ions in BAM show an asymmetrical broad emission band with a maximum at ~452 nm under excitation of VUV light at room temperature, showing that multiple crystalline cationic sites exist in the host. It was found that the chromaticity shifts greatly decrease with increasing heat‐treatment temperature. Regardless of the Eu2+ concentration, the chromaticity shifts caused by heat‐treatment are greater than that caused by VUV irradiation. Compared with conventional BAM, a solid solution of BAM with barium aluminate as a powder and film was also studied, and very few chromacity shifts were observed. It is suggested that the distribution of Eu2+ ions in different sites in a BAM lattice results in different chromaticity coordinates. By increasing the Eu2+ concentration in BAM, or under heat‐treatment and VUV irradiation, the emission band shifts towards longer wavelengths.  相似文献   

11.
Abstract— Amorphous‐oxide‐semiconductor thin‐film transistors (TFTs) have gained wide attention in recent years due to their many merits. In this paper, a series of top‐gate transparent thin‐film transistors (TFTs) based on amorphous‐indium—gallium—zinc—oxide (a‐IGZO) semiconductors have been fabricated and investigated. Specifically, low‐temperature SiNx and SiOx were used as the gate insulator and different Ar/O2 gas‐flow ratios were used for a‐IGZO channel deposition to study the influences of gate insulators and channel‐deposition conditions. In addition to the investigation of device performance, the stability of these TFTs was also examined by applying constant‐current stressing. It was found that a high mobility of 30‐45 cm2/V‐sec and small threshold‐voltage shift in constant‐current stressing can be achieved using SiNx with suitable hydrogen‐content stoichiometry as the gate insulator and the carefully adjusted Ar/O2 flow ratio for channel deposition. These results may be associated with hydrogen incorporation into the channel, the lower defect trap density, and the better water/oxygen barrier properties (impermeability) of the low‐temperature SiNx.  相似文献   

12.
Abstract— High‐performance top‐gate thin‐film transistors (TFTs) with a transparent zinc oxide (ZnO) channel have been developed. ZnO thin films used as active channels were deposited by rf magnetron sputtering. The electrical properties and thermal stability of the ZnO films are controlled by the deposition conditions. A gate insulator made of silicon nitride (SiNx) was deposited on the ZnO films by conventional P‐CVD. A novel ZnO‐TFT process based on photolithography is proposed for AMLCDs. AMLCDs having an aperture ratio and pixel density comparable to those of a‐Si:H TFT‐LCDs are driven by ZnO TFTs using the same driving scheme of conventional AMLCDs.  相似文献   

13.
Abstract— Carbon nanotubes and semiconductor nanowires are a new class of materials currently being studied within the context of molecular electronics. Because of their excellent characteristics, transistors based on carbon nanotubes and semiconductor nanowires could become the workhorse of the post‐CMOS era. Since carbon nanotubes as well as Si or Ge nanowires can be grown at low temperature, using similar CVD‐type processes and on non‐crystalline and non‐refractory substrates, they could (and will) certainly be used in the near future for the fabrication of thin‐film transistors and active‐matrix backplanes. However, the development of these nanomaterials is hampered by the general problems posed by their manipulation, placement, and in‐plane organization. The possible use of CNT random networks (that do not need to be organised) for the fabrication of thin‐film transistors will be reviewed. Then a new way of organizing semiconductor NWs in a thin‐film transistor, based on the use of lateral porous anodic alumina templates, will be presented.  相似文献   

14.
Abstract— An update of the progress of inherently low‐temperature poly‐Si (LTPS) technologies, such as ELA, ion doping, and activation in conjunction with chemical vapor deposition (CVD) and photolithography will be given. We will also discuss whether LTPS LCDs will be applied to a large‐scale production line using a large motherglass substrate. It was found that a more‐powerful excimer laser as well as photolithography with higher‐resolution and a more‐precise overlaid arrangement would enable a large‐scale production line handling motherglass of 4th generation size to be constructed in the very near future with reasonable investment and productivity costs.  相似文献   

15.
Abstract— A high‐rate sputtering‐deposition process for MgO thin films for PDP fabrication was recently developed. The deposition rate of the MgO thin film was about 300 nm/min which shows the possibility of production‐line application. The MgO film deposited in this work has a higher density than that of other deposition processes such as electron‐beam deposition and shows good discharge characteristics including firing voltage and discharge formation. These were achieved by controlling the stoichiometry and/or the impurity doping during the sputtering process.  相似文献   

16.
We have successfully reduced threshold voltage shifts of amorphous In–Ga–Zn–O thin‐film transistors (a‐IGZO TFTs) on transparent polyimide films against bias‐temperature stress below 100 mV, which is equivalent to those on glass substrates. This high reliability was achieved by dense IGZO thin films and annealing temperature below 300 °C. We have reduced bulk defects of IGZO thin films and interface defects between gate insulator and IGZO thin film by optimizing deposition conditions of IGZO thin films and annealing conditions. Furthermore, a 3.0‐in. flexible active‐matrix organic light‐emitting diode was demonstrated with the highly reliable a‐IGZO TFT backplane on polyimide film. The polyimide film coating process is compatible with mass‐production lines. We believe that flexible organic light‐emitting diode displays can be mass produced using a‐IGZO TFT backplane on polyimide films.  相似文献   

17.
黄磊  王陶  唐永炳 《集成技术》2017,6(4):70-79
金刚石薄膜具有优异的物理化学性质,在耐磨涂层、生物医学、薄膜微传感器、微机电系统等诸多领域有着广阔的应用前景.文章综述了近年来在金刚石薄膜领域研究的最新进展,着重介绍了目前主流的金刚石薄膜制备方法及优缺点,阐述了薄膜的生长机理以及提高金刚石薄膜沉积速率和质量的技术方法,为该领域的研究人员提供参考.  相似文献   

18.
This paper describes two silicon carbide (SiC) microfabrication processes for SiC glass-press molds. One is silicon lost molding combined with SiC chemical-vapor deposition (CVD) and SiC reaction sintering (RS). The other is silicon lost molding combined with SiC CVD and SiC solid-state reaction bonding (SSRB). In both of these processes, an original pattern on a silicon substrate is transferred to a CVD SiC film, and then the film is backed by bulk SiC to obtain rigidity and robustness against pressing force. Finally, the silicon substrate is etched away to release a SiC mold. In the process using SiC CVD and RS, an original pattern on a silicon substrate was transferred to a SiC mold, but the surface roughness of the SiC mold was 0.05-0.08 /spl mu/m Ra, and worse than required by the glass-press mold. This was caused by the transformation of amorphous SiC to polycrystalline SiC in RS, which was confirmed by the X-ray diffraction (XRD) data of the CVD SiC film before and after RS. In the process using SiC CVD and SSRB, the surface of the SiC mold was smooth (0.004-0.008 /spl mu/m Ra) without the crystallization of the amorphous CVD SiC film. The SiC mold was pressed to Pyrex glass to demonstrate its high-temperature strength. The Pyrex glass was deformed by the SiC mold at 850 /spl deg/C without a void, and no significant deformation of the SiC mold was observed.  相似文献   

19.
Abstract— A flexible fluorescent lamp that utilizes the same plasma discharge mode as in PDPs has been manufactured. The structure of the flexible lamp is simple and easy to manufacture. All‐plastic materials including plastic substrates, barrier ribs (spacers), and sealants for low‐temperature manufacturing processing have been adopted except for the phosphor and MgO thin film. The MgO thin films were coated on the plastic substrates as a protection layer against the plasma discharge. The adhesion and biaxial texture of MgO thin film deposited on the plastic substrates, poly‐ethyle‐nenaphthalate (PEN) and polycarbonate (PC), at low temperature (100–180°C) has been characterized. The MgO film on PEN shows good adhesion under a repeated bending test. The manufactured flexible lamp consists of two plastic substrates of about 3 in. on the diagonal, barrier rib (spacer), and external ITO electrodes. The Ne‐Xe (5%) gas mixture at 100–200 Torr was used for the discharge gas. A maximum surface luminance of about 100 cd/m2 was achieved for a 1 ‐kHz AC pulse.  相似文献   

20.
Abstract— Ink‐jet printing was used to prepare a single‐substrate multicolor cholesteric liquid‐crystal (Ch‐LC) display incorporating three Ch‐LCs exhibiting different reflective wavelengths. A room‐temperature low‐vacuum chemical‐vapor‐deposition process was developed for coating a thin polymer film onto the Ch‐LC so that the top electrode could be coated onto the Ch‐LC layer. Herein, the successful operation of such a 10.4‐in. QVGA Ch‐LC display at 40 V will be described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号