首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
The particle size of N‐halamine biocidal polymers was methodically modified forming beads of different sizes by blending water‐insoluble N‐halamine polyurethane with sodium alginate as the matrix and loading heterocyclic rings onto modified silica gels. The biological activity of the prepared beads and halogenated modified silica derivatives was evaluated against examples of Gram‐positive (Staphylococcus aureus) and Gram‐negative (Escherichia coli) bacteria. The recycling possibilities and the optimum preparation conditions of the blended beads were investigated; blending prehalogenated polyurethane (5%, w/v) with sodium alginate (3%, w/v) followed by crosslinking with CaCl2 (10%, w/v) at 40°C are the optimum preparation conditions for the alginate beads. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
1,6‐Hexanediol diacrylate (HDDA) was grafted onto polypropylene (PP) substrates in the presence of benzophenone (BP) and isopropylthioxanthone (ITX) photoinitiators, and then polyurethane acrylate formulations were coated onto the HDDA‐g‐PP substrates, using UV radiation. The amount grafted and the grafting efficiency of the polymerizations were determined gravimetrically. The effects of the photoinitiator concentration and the UV radiation intensity on the physicochemical surface properties and the grafting efficiency of the UV‐radiation grafting polymerizations were characterized in detail using contact‐angle measurements, Fourier transform infrared spectroscopy with attenuated total internal reflection, and scanning electron microscopy. The results showed that the amount grafted and the surface polarity of the HDDA‐g‐PP substrates both increased linearly with increasing BP photoinitiator concentration and UV radiation intensity, and that the addition of a small amount of ITX markedly enhanced both parameters, probably due to photosensitization. The adhesion of the UV‐cured coating onto the HDDA‐g‐PP substrates was evaluated using the crosshatch adhesion test. The results indicated that the amount of HDDA grafted onto the PP substrates should exceed about 1 mmol/cm2 for satisfactory adhesion with the UV‐cured coating. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1446–1461, 2006  相似文献   

3.
《Polymer Composites》2017,38(12):2829-2840
The biocompatible polymer films show potential as an alternative to gels and patches used for topical delivery of therapeutics and cosmetics. The physical strength and antimicrobial activity of polymer films are important attributes for their topical applicability. Here, we have investigated the physical properties and antibacterial activity of six commonly used film forming polymers before and after formation of nanocomposites with gold nanoparticles (AuNP). The blank and AuNP loaded polymer films were prepared by solvent casting method and characterized for thickness, tensile strength, burst strength, skin adhesion strength, degree of swelling, and porosity. The antibacterial activity of the composite films was evaluated by zone‐of‐inhibition and spectrophotometric growth inhibition method against Staphylococcus aureus and Escherichia coli . The physical characterization showed that chitosan films casted using 1.5% w/w resulted in 76 MPa of tensile strength, while zein films required 40% w/w to show 23 MPa of tensile strength. The AuNP (250 μM; 35 nm) loaded polymer films showed significantly (p < 0.05) greater burst strength and skin adhesion strength compared with respective blank films. Among the polymers tested, only blank films of chitosan and zein showed antibacterial activity. On the other hand, all the AuNP loaded polymer films showed significantly (p < 0.05) greater antibacterial activity. The AuNP loaded chitosan film showed E. coli growth inhibition similar to tetracycline. Taken together, chitosan‐ and zein‐AuNP nanocomposite films showed better physical properties and antibacterial activity. POLYM. COMPOS., 38:2829–2840, 2017. © 2015 Society of Plastics Engineers  相似文献   

4.
Numerous traditional adhesives have good adhesion in dry environments. However, non-environmental-friendliness and poor water resistance largely limit their practical applications. To prepare biocompatible adhesives with strong water resistance and adhesion strength, in this paper, catechol-functionalized cellulose-based adhesive polymers are synthesized by grafting N-(3,4-dihydroxyphenethyl)methacrylamide and methyl methacrylate onto cellulose chain through atom transfer radical polymerization (ATRP). The successful synthesis of the catechol-functionalized cellulose-based adhesive polymers is confirmed by FTIR and 1H NMR. The different characteristics of the adhesive polymers, such as thermal stability, swelling ratio, biocompatibility, and adhesion strength are investigated. Strong water resistance on various substrates is realized in underwater environment for the catechol-functionalized cellulose-based adhesive with addition of Fe3+. The adhesion strength and thermal stability are enhanced when the catechol content is increased. The adhesive with catechol content of 25.4% shows the adhesion strength of 0.45 MPa for iron substrate in underwater environment. In addition, the adhesive with addition of Fe3+ exhibits excellent adhesion in dry environment, with maximum adhesion strength of 3.50 MPa for iron substrate. The cell culture test shows that the adhesive polymers have excellent biocompatibility. The biocompatible adhesives with strong water resistance have potential application in electronic, wood, and building fields.  相似文献   

5.
In this study, polyurethane prepolymer (PUP) was prepared by the reaction of Poly‐1,4‐butylene glycol adipate diol (PBA) and 4,4′‐Methylenedi‐p‐phenyl diisocyanate (MDI). The as‐prepared PUP was then blended with Polylactide (PLA), and the impact of the PUP on the blends regarding their structure and properties were thoroughly analyzed. Also, PLA was blended with PU powder without isocyanate groups (NCO) as an important control sample (PLAPW) to study the interface interaction of the blends. Obvious yield and neck stretch were obtained after the addition of PUP, and the elongation ratio at break increased from 2.9% to 231.5%. In contrast, the mechanical properties of PLAPW decreased significantly mainly due to the simple physical blending of the polymers without the formation of covalent bonds. Also, the results of the FTIR, SEM, DSC, and DMA analysis showed that the reactions of NCO groups in PUP with the terminal hydroxyl or carboxyl groups in PLA significantly improved the compatibility of the PUP and PLA blend. Compared to pristine PLA, the highest decomposition temperature of the PLA and PUP blend (PLAPU) increased from 359.3°C to 362.6°C. Additionally the thermal stability and mechanical properties of the blended materials were exceedingly improved even with only 5% of PUP in the blended materials. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42983.  相似文献   

6.
The achievement of optimum adhesion between a thermoset and an inorganic material is an important goal for the composites and coatings industries. There is a growing interest in the use of structural surface modifiers, such as nanotubes, nanoparticles, and whiskers, to improve this adhesion. Here, a method for electrostatically depositing poly(ethylene imine)‐functionalized silica nanoparticles onto E‐glass fibers was developed. The deposition of 26‐nm functionalized particles onto glycidyloxypropyltrimethoxysilane (GPS)‐functionalized E‐glass fibers and then their embedding in a resin of diglycidyl ether of bisphenol A and m‐phenylene diamine increased the interfacial shear strength (IFSS) 35% over that of bare fibers and 8% over that of GPS‐functionalized fibers. IFSS was highly dependent on the particle size; the 16‐nm functionalized particles had little effect on the IFSS. When the particles size was increased to 71 and 100 nm, this led to increasingly poor IFSS values, whereas the 26‐nm particles produced the best results. Similar results were seen with the transverse flexural strength of the unidirectional composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41516.  相似文献   

7.
The crystalline structure and physico‐mechanical properties of polypropylene (PP) blended with ethylene–propylene copolymer (EPM) were investigated. WAXS diffractograms showed that the addition of EPM did not affect the crystalline structure of PP. DSC curves revealed the presence of two Tg peaks indicating the amorphous phases of EPM and PP. As EPM increased, the elastomeric domains cavitated from PP matrix increased while the tensile stress and modulus of elasticity decreased. Impact strength, on the other hand, increased, and showed a remarkable effect at 30% EPM/PP. The properties of the blended polymers were compared with the commercial PP impact copolymer, and it was found that polyblends containing 30% EPM was suited for applications on products requiring very high impact strength. Further addition of EPM from 40 to 50% produced very high impact strength, but the tensile stress and modulus of elasticity were very low. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1200–1208, 2000  相似文献   

8.
To stabilize vitamin A in a cosmetic/dermatological formulation, we present here a new encapsulation method based on polymer microspheres having a localized “proton‐buffering” capacity. Poly(methyl methacrylate)‐g‐polyethylenimine (PMMA‐g‐PEI) was prepared by direct condensation grafting of PEI onto poly(methyl methacrylate‐co‐methyl acrylic acid). The reaction was confirmed by FT‐IR analysis showing the amide vibration at 1,550 cm?1. Elemental analysis indicated that the weight content of the grafted PEI was 1.6% (w/w). Vitamin A was encapsulated into PMMA‐g‐PEI microspheres by using an oil‐in‐water (O/W) single emulsion method. The presence of PEI moiety dramatically improved the chemical stability of vitamin A in microspheres. Vitamin A encapsulated within PMMA‐g‐PEI microspheres maintained 91% of its initial activity after 30‐day incubation at 40°C, while only maintaining 60% within plain PMMA microspheres. This study demonstrates that proton‐buffering within hydrophobic polymer matrix is a useful strategy for stabilizing “acid‐labile” active ingredients. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 517–522, 2004  相似文献   

9.
Poly(butylene terephthalate) (PBT) and acrylate rubber (ACM) were melt‐blended in a Brabender Plasticorder at 220°C and 40 rpm rotor speed. The blends were dynamically vulcanized by the addition of hexamethylenediamine carbamate (HMDC) during the melt‐blending operation in the Brabender. Dynamic mechanical thermal analysis (DMTA) of the blends suggests a two‐phase morphology of the blends with two separate Tg 's for both components. The blends were also compatibilized by the addition of a dibutyl tin dilaurate (DBTDL) catalyst, which enhanced the extent of the transesterification reaction between the two polymers. The transreaction results in softer blends with higher elongation properties. The above blends also show very good oil and heat resistance at elevated temperatures. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1001–1008, 2000  相似文献   

10.
Dendritic‐linear‐dendritic (DLD) hybrids are highly functional materials combining the properties of linear and dendritic polymers. Attempts to electrospin DLD polymers composed of hyperbranched dendritic blocks of 2,2‐bis(hydroxymethyl) propionic acid on a linear poly(ethylene glycol) core proved unsuccessful. Nevertheless, when these DLD hybrids were blended with an array of different biodegradable polymers as entanglement enhancers, nanofibrous nonwovens were successfully prepared by electrospinning. The pseudogeneration degree of the DLDs, the nature of the co‐electrospun polymer and the solvent systems used for the preparation of the electrospinning solutions exerted a significant effect on the diameter and morphology of the electrospun fibers. It is worth‐noting that aqueous solutions of the DLD polymers and only 1% (w/v) poly(ethylene oxide) resulted in the production of smoother and thinner nanofibers. Such dendritic nanofibrous scaffolds can be promising materials for biomedical applications due to their biocompatibility, biodegradability, multifunctionality, and advanced structural architecture. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45949.  相似文献   

11.
In this study, biodegradable blend of Poly (Ethylene‐co‐Vinyl Acetate) (EVA) and Ethyl Cellulose (EC) were prepared. Ethylene vinyl alcohol (EVOH) copolymer was used as an interfacial compatibilizer to enhance adhesion between EVA and EC. The melt blended compatibilized biocomposites were examined for mechanical and thermal properties as per the ASTM standards. It has been found that the EC has a reinforcing effect on EVA leading to enhanced tensile strength and also impart biodegradability. Thus, a high loading of 50% EC could be added without compromising much on the mechanical properties. Analysis of the tensile data using predictive theories showed an enhanced interaction of the dispersed phase (EC) and the matrix (EVA). The compatibilizing effects of EVOH on these blends were confirmed by the significant improvement in the mechanical properties comparable with neat EVA as also observed by SEM microscopy. The TGA thermograms exhibits two‐stage degradation and as EC content increases, the onset temperature for thermal degradation reduces. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
The melt grafting of 10‐undecenoic acid (UA) onto a linear low‐density polyethylene (LLDPE) was studied. The grafting reaction was performed in a thermoplastic mixer and 2,5‐dimethyl‐2,5‐di(tert‐butylperoxy) hexane was used as initiator. The concentration of UA and peroxide ranged from 1 to 4% (w/w) and 0.025 to 0.1% (w/w), respectively. Evidence of the grafting of UA as well as its extent was determined by FTIR. Experimental results showed that the amount of UA grafted increases with both the UA and initiator concentrations. However, the greatest efficiency of grafting was found at the lowest concentration of UA investigated. The grafting efficiency ranged from 8 to 40%. The dynamic linear viscoelastic properties of the original polymer and the grafted materials were evaluated at different frequencies at 160°C using a dynamic rotational rheometer. The modification process affected the melt elasticity and viscosity of the LLDPE. When the original polymer was modified only with peroxide both properties increased with respect to those of the original material. However, when UA was grafted onto LLDPE, the resulting polymers displayed values of elastic moduli and viscosity lower than those of the polymer modified with peroxide. Moreover, when a concentration of 4% of UA was used, the values of those properties were even lower than those corresponding to the original LLDPE. These observations combined with the data obtained from the GPC results suggest that scission reactions may be favored by the presence on UA. In contrast with previous observations, the thermal properties measured by DSC were only slightly altered. The fusion temperature of the modified polymers was slightly lower than that corresponding to the original polymer. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2303–2311, 2004  相似文献   

13.
Chitosan (Ch) and N‐carboxymethylchitosan (N‐CMCh) films were prepared by the casting method at concentrations of 1% and 2% of polymer, with or without plasticizer: polyethylene glycol (PEG‐400) and glycerol (G), at 15% (w/w). The influence of composition on mechanical properties, water vapour transmission rate (WVTR), water saturation, and aqueous dissolution of the films was analysed. The thermal stability of the mixture (polymer:plasticizer, 1:1) was evaluated by thermogravimetric analysis (TGA). In general, all the properties were affected by the plasticizers. The plasticized films showed lower strength and a higher percentage of elongation (%E), in the following order: G > PEG‐400 > unplasticized film. The total WVTR increased with Ch concentration, with a different WVTR profile for Ch and N‐CMCh. While the PEG‐400 addition did not significantly modify the WVTR profile of films, the glycerol enhanced the transport of water vapour through both polymers. The plasticizer addition increased the time of water film saturation, in the following order: G > PEG‐400 > unplasticized film; this was more pronounced in the N‐CMCh films, probably due to the formation of hydrogen bonds. The solubility of the films was also affected by their composition. Copyright © 2006 Society of Chemical Industry  相似文献   

14.
Triazole cross‐linked polymers based on poly(3‐azidomethyl‐3‐methyl oxetane) (poly‐AMMO) and glycidyl azide polymer (GAP) were prepared using bis‐propargyl‐1,4‐cyclohexyl‐dicarboxylate (BPHA) as curing agent, respectively. Swelling tests demonstrated that cross‐linking densities of the resulted polymers both increased with the increase of BPHA. Triazole cross‐linked polymers based on poly‐AMMO showed superior tensile strength and elongation at break than those of GAP at comparable stoichiometry. The curing kinetics was also investigated by FTIR, and GAP exhibited faster reaction rate when reacted with BPHA than that of poly‐AMMO. In addition, with the increase of cross‐linking density, the glass transition temperature (Tg) of as‐prepared polymers significantly increased, and poly‐AMMO‐based polymers showed stronger Tg‐raising effect than GAP‐based polymers. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43341.  相似文献   

15.
In this study, a random copolymer of poly(vinyl pyrrolidone‐co‐methyl methacrylate‐co‐acrylic acid) was synthesized via a one‐pot reaction with the reversible addition–fragmentation chain‐transfer method and was then blended with poly(ether sulfone) (PES) to prepare flat‐sheet membranes that were expected to have anticoagulant and antifouling properties. The synthesized copolymer was characterized by Fourier transform infrared (FTIR) and NMR spectroscopy. The molecular weights and molecular weight distributions were determined by gel permeation chromatography. Elemental analysis was used to calculate the molar ratios of vinyl pyrrolidone (VP), methyl methacrylate (MMA), and acrylic acid (AA) in the copolymer. A liquid–liquid phase‐inversion technique was used to prepare the copolymer‐blended PES membranes. X‐ray photoelectron spectroscopy and attenuated total reflectance–FTIR spectroscopy were used to investigate the copolymer on the membrane surfaces. Compared with the pristine PES membrane, the modified PES membranes showed improved hydrophilicity, low hemolysis ratios, decreased protein adsorption, and suppressed platelet adhesion. Furthermore, the thrombin time and activated partial thromboplastin time indicated that the blood compatibility of the modified PES membranes were improved. The results of the 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay and the cell morphology suggested that the cytocompatibility increased. In addition, the modified membranes showed good protein antifouling properties. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4284–4298, 2013  相似文献   

16.
A new grafting method was developed to incorporate maleic anhydride directly onto solid‐state polypropylene powders. Maleic anhydride grafts altered the nonpolar characteristics of polypropylene so that much better mixing was achieved in blends and composites of polypropylene with many other polymers and fillers. Maleic anhydride was grafted onto polypropylene by the peroxide‐catalyzed swell grafting method, with a maximum extent of grafting of 4.60%. Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy, tensile testing, and impact testing were used to characterize the isotactic polypropylene (iPP), maleic anhydride grafted polypropylene (MAH‐giPP), and (isotactic polypropylene)/(calcium carbonate) composites (iPP/CaCO3). The crystallinity and heat of fusion of the MAH‐giPP decreased as the extent of grafting increased. The mechanical properties of the CaCO3 filled polypropylene were improved by adding MAH‐giPP as a compatibilizing agent. The dispersion of the fillers in the polymer matrix and the adhesion between the CaCO3 particles and the polymer matrix were improved by adding the compatibilizer.  相似文献   

17.
Vinyl addition norbornene polymers with phenol pendent groups are obtained by methanolysis of the 4‐acetoxyphenyl norbornene polymer. Thin films of this polymer blended with additives such as norbornene polymers with hexafluoroalcohol pendent groups and diazonaphthoquinone compounds result in linear dissolution in tetramethylammonium hydroxide developer. Good resolution, positive tone patterns are obtained from image‐wise exposure of thin films of blends of the diazonaphthoquinone additives with both phenol pendent norbornene homopolymer and with norbornene copolymers with both phenol and hexafluoroalcohol pendent groups. Properties such as transparency, dielectric constant, chemical, and thermal resistance were determined for cured copolymer compositions containing an epoxy crosslinker. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44952.  相似文献   

18.
This work describes the physicochemical, mechanical, and in vitro biological properties of three epoxy networks based on diglycidyl ether of bisphenol‐A (DGEBA) epoxy prepolymer cured with triethylenetetramine, 1‐(2‐aminoethyl)piperazine (AEP) and isophoronediamine. The mechanical properties were evaluated with respect to impact and flexural tests. Functionality rules the mechanical behavior of epoxy networks by increasing the crosslink density and the flexural modulus, increasing Tg and decreasing the chain flexibility and the impact resistance. The biological interactions between the obtained epoxy polymers and blood were studied by in vitro methods. Studies on the protein adsorption, platelet adhesion, and thrombus formation are presented. The protein adsorption assays onto polymeric surfaces showed that the epoxy networks adsorbed more albumin than fibrinogen. The results about platelet adhesion and thrombus formation indicated that DGEBA‐IPD and DGEBA‐AEP networks exhibits good hemocompatible behavior. The materials revealed no signs of cytotoxicity to Chinese hamster ovary cells, showing a satisfactory cytocompatibility. In this way, we can assume that the epoxy polymers are biocompatible materials. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
In this study, polybutyrolactam (PBA) was synthesized, and the PBA/chitosan (CS) blended films were fabricated for wound dressings. The results showed that the surface roughness of the blended films decreased with the increasing ratios of CS. In addition, the tensile strength of the film with 50 wt % CS (NC50) was about 33.6 MPa and the highest compared with other films. The hydrophilicity of the blended films gradually decreased while the water vapor transmission rates (WVTRs) increased with the increase of CS content. Moreover, the blended films could be biodegradable in phosphate buffer saline. Both PBA and blended films were non‐toxic and good for L929 cells growth, showing good cytocompatibility. Furthermore, the NC50 was found to promote the cell proliferation better than other groups. It can be suggested that the NC50 combined the advantages of both PBA and CS well. Therefore, the NC50 with good cytocompatibility, mechanical properties, and WVTRs might be suitable for wound dressing applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46511.  相似文献   

20.
BACKGROUND: Polypropylene (PP) is one of the most widely used polyolefins but gets restricted in surface applications due to its non‐polar nature. Surface properties of films made of PP were modified to improve their adhesion to elastomeric polymers such as thermoplastic polyurethanes (TPU), especially to Pebax® [poly(ether‐block‐amide)]. RESULTS: Surface modification of PP was brought about by blending it with glycidyl methacrylate (GMA)‐containing polymer to increase its surface energy. Films of modified PP were analyzed to determine the blending efficiency and characterized using contact angle measurements, differential scanning calorimetry, X‐ray photoelectron spectroscopy and scanning electron microscopy. Molecular dynamics simulations were done to determine surface and bulk properties of PP blended with GMA. The computational results correlated very well with the experimental data and revealed that the changes in the surface energy can be linked to the position of the functional group within the sample. T‐Peel tests indicated a 2.4 times increase in adhesion to Pebax® and only 1.7 times increase in adhesion to TPU compared to unmodified PP. CONCLUSION: The surface energy and enhanced adhesion proved that PP was successfully modified and its surface made more polar. Copyright © 2008 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号