首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 604 毫秒
1.
The report that gelonin cross-linked with monoclonal antibodies with the use of 2-iminothiolane (2-IT) exhibited higher cytotoxicity than the conjugates prepared with the use of N-succinimidyl-3-(2-pyridylthio) propionate (SPDP) alone, has prompted us to investigate the effect of epsilon-NH2 group modification with 2-IT on the ribosome-inactivating property (RIP) of gelonin. The purified gelonin was modified with 2-IT at a different molar ratio and their effects on immunoreactivity and ribosome-inactivating property were compared with those of N-succinimidyl 6-[3-(2-pyridyldithio) propionamido] hexanoate (long chain-SPDP) and SPDP modified gelonin derivatives. Modification of single amino group with 2-IT results in about 25-50% inhibition of immunoreactivity and 60-70% loss of protein synthesis inhibition activity. Modification of 2-3 amino groups further hampers both immunoreactivity and protein synthesis inhibition property of gelonin. Both the long chain-SPDP with SPDP modifications showed more pronounced effects on immunoreactivity and RIP activity as compared to the similar ratio of 2-IT modification(s). It may, therefore, be concluded that the positive charge plays an important role in the immunological as well as the protein synthesis inhibitory effect of gelonin.  相似文献   

2.
Gelonin, a ribosome-inactivating protein has been isolated from the seeds of Gelonium multifluorum of Euphorbiaceae family by two methods and the results are compared. In method-I conventional aqueous extraction, cation-exchange and gel-filtration chromatography has been used. In method-II S-Sepharose fast flow gel has been used to purify the proteins from the seed extract, followed by ammonium sulfate fractionation, cation-exchange and gel-filtration chromatography. Extensive physico-chemical and immunological characterizations show that molecular weight of gelonin as determined by gel-filtration chromatography and SDS-PAGE is approximately 30 kDa. The non-proteinous material which binds to CMC-gel in association with gelonin in method-I is substantially removed when gelonin is purified by method-II. Cation exchange, G-100 chromatography, RP-HPLC and SDS-PAGE show that method-II yields 50% more purified gelonin when compared to the yield by method-I. The immunoreactivity of gelonin obtained by methods I and II vary from 22-26% and 50-66% respectively and the ribosome-inactivating property vary from 46-56% and 70-87% respectively.  相似文献   

3.
The effectiveness of gelonin to arrest protein synthesis, thereby limiting the growth of cancer cells was studied by encapsulating it into liposomes. The protein was extracted from the seeds of Indian plant Gelonium multiflorum by ammonium sulfate precipitation and purified using cation-exchange and gel-filtration chromatography. Biological activity of purified gelonin was determined using a rabbit reticulocyte lysate assay in the cell-free translational experiments. Gelonin was encapsulated in conventional liposomes prepared by the dry film method in order to retain biological activity of the entrapped protein. Carcinogenesis was induced in Swiss albino mice by intravenous administration of DBN (10 mg kg(-1) body weight) at weekly intervals. Marker enzyme assays (GGT, AChE, and GST), GSH levels, cell proliferation assay, hepatocyte DNA analysis, histological examination of micro sections of liver tissues were parameters used to monitor carcinogenesis induction, and regression in mice. From the in vitro experiments conducted, it was observed that gelonin upon its encapsulation into liposome, resulted in significant destruction of the transformed liver cells by its cytotoxic effects that arrest protein synthesis. Various parameters studied to monitor regression also suggested mass cell destruction to liver upon administration of liposomal gelonin in mice exposed to DBN.  相似文献   

4.
Gelonin purified from the seeds of Gelonium multiflorum using cation-exchange and gel-filtration chromatography was characterized for its purity, homogeneity and Mr by reverse-phase h.p.l.c. and SDS/polyacrylamide-gel electrophoresis analysis and judged to be 98% pure. As the cross-linking agent N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP) has been used for linking gelonin via its epsilon-NH2 group to its carrier antibodies or hormones for immunotoxin or hormonotoxin respectively, an attempt was made to study the effect of this modification of gelonin on its immunoreactivity. A radioimmunoassay was developed for this purpose. By sequential modification, four categories of amino group modifications on immunoreactivity were observed. Even one or two modifications, representing one-twentieth to one-tenth of available epsilon-NH2 groups in the protein caused about 75% loss in immunoreactivity, with additional reactions contributing to further deteriorations. By using a gelonin radioimmunoassay, the immunoreactivity of gelonin in three hormonotoxins was determined with gelonin and modified gelonin as standards. The gelonin equivalent in our hormonotoxins was in agreement with the values determined by spectrophotometric and gel-electrophoresis methods. As the immunoreactivity of gelonin-SPDP was not further altered after conjugation to its carrier protein ovine lutropin, a specific radioimmunoassay of gelonin could be used to evaluate the molar ratio of the conjugates prepared by using SPDP as cross-linker and gelonin-SPDP as a standard.  相似文献   

5.
Ribosome-inactivating protein, gelonin, isolated from an Indian plant Gelonium multiflorum of Euphorbiaceae family has been used to design and synthesize immunotoxins and hormonotoxins for selective targeting purposes. Since gelonin isolated by aqueous extraction, cation-exchange chromatography and gel-filtration chromatography (Method I), contains non-proteinous material absorbing at 280 nm, the ammonium sulphate precipitation method (Method II) and Cibacron blue affinity chromatography method. (Method III) have been used to purify gelonin from the dry seeds. Three batches of gelonin purified by each method were prepared and subjected to extensive physico-chemical and immunochemical characterization. The molecular weight was determined by gel-filtration chromatography on a pre-calibrated Sephadex G-100, TSK-G4000 TW on HPLC or Superose-12 on fast protein liquid chromatography. In all cases, the molecular weight was approximately 30,000Da. The SDS-PAGE also revealed a homogeneous protein of 30kDa molecular weight. In Method II, the non-proteinous material which binds to CMC-gel in association of gelonin was substantially removed during ammonium sulphate fractionation. A careful analysis clearly revealed that Method II, although yielded low protein, gave gelonin devoid of the non-proteinous material. The SPDP modification of epsilon-NH2 groups of gelonin obtained from Methods I, II, and III was also carried out and its effect on immunoreactivity was studied.  相似文献   

6.
The amino acid and sugar compositions of four ribosome-inactivating proteins (gelonin, Momordica charantia inhibitor, dianthin 30 and dianthin 32) were determined. The proteins are all basic glycoproteins (pI greater than 8) containing mannose (more abundant in gelonin), glucose, xylose, fucose (absent from gelonin) and glucosamine. The ribosome-inactivating properties of the proteins examined are not modified by pretreatment with N-ethylmaleimide. Precipitating and inactivating antibodies can be raised against ribosome-inactivating proteins; a weak cross-reaction was observed only between dianthin 30 and dianthin 32.  相似文献   

7.
The aim of this work was to prepare coenzyme Q10 (CoQ10) long-circulating liposomes, and establish the quality standard to determine the content and entrapment efficiency. CoQ10 long-circulating liposomes were prepared by the film dispersion method, HPLC assay for the determination of CoQ10 was developed. Free drugs and liposomes were separated using the protamine aggregation method and entrapment efficiency was determined. The liposomes were homogeneous and the mean diameter was 166.0 nm, Zeta potential was −22.2 mV. The content and entrapment efficiency of CoQ10 were 98.2% and 93.2% for three batches of liposomes, respectively. The lyophilized form of liposomes prepared by freeze-drying showed stable quality characteristics during storage. The formulation and preparative method can be used to prepare CoQ10 long-circulating liposomes with high entrapment efficiency and high quality, the determination method of drug content and entrapment efficiency were effective and rapid and can be used for quality evaluation of liposomes.  相似文献   

8.
Murine monoclonal antibody ZME-018 recognizes a 240 Kda glycoprotein present on the surface of most human melanoma cells and on over 80% of human biopsy specimens tested. Gelonin is a ribosome-inactivating plant toxin similar in nature and rivaling the activity of ricin A chain. ZME-018 was coupled to purified gelonin using the reagents SPDP and 2-iminothiolane. The ZME-gelonin conjugate was purified by S-300 Sephacryl and Blue Sepharose chromatography, removing unreacted gelonin and antibody, respectively. PAGE analysis showed that ZME was coupled to 1, 2, or 3 gelonin molecules. The ZME-gelonin conjugate was 10(6)-fold more active than gelonin itself in inhibiting the growth of log-phase human melanoma cells in culture. The immunoconjugate was not cytotoxic to antigen negative T-24 (human bladder carcinoma) cells. Treatment of melanoma cells with recombinant IFN-alpha or TNF substantially augmented the cytotoxicity of the immunoconjugate while treatment with IFN-gamma had a minor effect. Using the human tumor colony assay of melanoma cells obtained from fresh biopsy specimens, greater than 90% growth suppression was observed in 2 of 4 samples tested at a concentration of 250 ng/ml. In addition, 25% growth suppression was observed with a third sample tested, and no growth suppression was observed in 1 sample. Thus, clonogenic melanoma cells are sensitive in vitro to the cytotoxic activity of this immunotoxin at concentrations which we presume are pharmacologically relevant.  相似文献   

9.
This article addresses and investigates the dual incorporation of daunorubicin (DR) and 6-mercaptopurine (6-MP) in liposomes for better chemotherapy. These drugs are potential candidates for interaction due to the quinone (H acceptor) and hydroxyl (H donor) groups on DR and 6-MP, respectively. Interactions between the two drugs in solution were monitored by UV/Vis and fluorescence spectroscopy. Interaction between the two drugs inside the liposomes was evaluated by HPLC (for 6-MP) and by fluorescence spectroscopy (for daunorubicin) after phospholipase-mediated liposome lysis. Our results provide evidence for the lack of interaction between the two drugs in solution and in liposomes. The entrapment efficiencies of 6-MP in the neutral Phosphatidyl choline (PC):Cholesterol (Chol):: 2:1 and anionic PC:Chol:Cardiolipin (CL) :: 4:5:1 single and double drug liposomes were found to be 0.4% and 1.5% (on average), respectively. The entrapment efficiencies of DR in the neutral and anionic double drug liposomes were found to be 55% and 31%, respectively. The corresponding entrapment of daunorubicin in the single drug liposomes was found to be 62% on average. Our thin layer chromatography (TLC) and transmission electron microscopy (TEM) results suggest stability of lipid and liposomes, thus pointing plausible existence of double drug liposomes. Cytotoxicity experiments were performed by using both single drug and double drug liposomes. By comparing the results of phase contrast and fluorescence microscopy, it was observed that the double drug liposomes were internalized in the jurkat and Hut78 (highly resistant cell line) leukemia cells as viewed by the fluorescence of daunorubicin. The cytotoxicity was dose dependent and had shown a synergistic effect when double drug liposome was used.  相似文献   

10.
Gelonin, a type I ribosome-inactivating plant toxin, executes N-glycosidase activity on eukaryotic ribosomes. However, on intact cells, gelonin is relatively non-toxic, due to an incapability to penetrate cell membranes. Recently, a novel method, photochemical internalization (PCI), was invented for the translocation of membrane-impermeable molecules including gelonin to the cytosol [K. Berg et al., Cancer Res. 59 (1999) 1180-1183]. The combination of gelonin and photoactivation of endosomal and lysosomal localizing photosensitizers gives strong synergistic cytotoxic effects. In this study, we have evaluated the intracellular transport and stability of gelonin. By fluorescence microscopy, it was shown that gelonin co-localizes with the endosomal and lysosomal localizing photosensitizer, aluminum phthalocyanine with two sulfonate groups on adjacent phenyl rings, and both molecules re-localized to cytosol subsequently to light exposure. Gelonin accumulated in endosomal compartments by incubation at 18 degrees C was released to cytosol by PCI with concomitant inhibition of protein synthesis indicating that PCI can be executed through rupture of endosomal vesicles. The cathepsin inhibitor L-trans-epoxysuccinyl-leucyl amido(4-guanido)butane increased the cytotoxic effect of gelonin after PCI when gelonin was provided as a 2 h pulse followed by 4 h chase before PCI. Thus, although gelonin can enter the cytosol from lysosomes, lysosomal degradation is a limiting factor for the outcome of PCI of gelonin.  相似文献   

11.
单链核糖体失活蛋白的核糖核酸酶活性   总被引:5,自引:0,他引:5  
以芹菜4.5SRNA为底物, 在pH5.0的条件下, 5种纯核糖体失活蛋白:天花粉蛋白、苦瓜子蛋白、肥皂草蛋白、丝瓜素毒蛋白和多花白树毒蛋白均显示出核糖核酸酶活性, 放射自显影图显示出它们对RNA分子中的各种碱基具有不同的敏感性.  相似文献   

12.
The aim of the present investigation was to evaluate the prospective of surface-engineered vesicular carriers for mucosal immunization via the nasal route. IgG antibody was immobilized on the surface of hepatitis B surface antigen (HBsAg) antigen–loaded liposomes. The developed formulations were characterized on the basis of physicochemical parameters, such as morphology, particle size, polydispersity index, entrapment efficiency, and zeta potential. Liposomal formulations were then evaluated for in-process antigen stability and storage stability. In vivo studies were conducted to visualize targeting potential, localization pattern, and immunogenicity. In addition, immune response was compared with alum-HBsAg vaccine injected intramuscularly. The serum anti-HBsAg titer, obtained from the postnasal administration of IgG-coupled liposomes, was significantly higher than plain liposomes. Moreover, IgG-coupled liposomes generated both humoral (i.e., systemic and mucosal) and cellular immune responses upon nasal administration, while the alum-adsorbed antigen displayed neither cellular (cytokine level) nor mucosal (IgA) response. The formulation also displayed enhanced transmucosal transport, improved in vitro stability, and effective immunoadjuvant property. To conclude, IgG antibody-coupled liposomes may serve as novel carriers to augment the secretory immune response of antigen encapsulated in the liposomes, apparently by escalating liposome uptake via M cells, thereby rationalizing their use as a carrier adjuvant for nasal subunit vaccines.  相似文献   

13.
Amphotericin B (AmB) liposome formulations are very successful in the treatment of fungal infections and leishmaniasis. But higher cost limits its widespread use among people in developing countries. Therefore, we have developed a modified ethanol-injection method for the preparation of AmB liposomes. Two liposomal formulations were developed with dimyristoyl phosphatidylcholine [F-1a] and soya phosphatidylcholine [F-2a], along with egg phosphatidyl glycerol and cholesterol. AmB was dissolved in acidified dimethyl acetamide and mixed with ethanolic lipid solution and rapidly injected in 5% dextrose to prepare liposomes. Liposomes were characterized on the basis of size (~100?nm), zeta (–43.3?±?2.8 mV) and percent entrapment efficiency (>95%). The in vitro release study showed an insignificant difference (P?≥?0.05) for 24-hour release between marketed AmB liposomes (AmBisome) and F-1a and F-2a. Proliposome concentrate, used for the preparation of in situ liposomes, was physically stable for more than 3 months at experimental conditions. Similarly, AmB showed no sign of degradation in reconstituted liposomes stored at 2–8°C for more than 3 months. IC50 value of Ambisome (0.18 µg/mL) was comparatively similar to F-1a (0.17 µg/mL) and F-2a (0.16 µg/mL) against intramacrophagic amastigotes. Under experimental conditions, a novel modified method for AmB liposomes is a great success and generates interest for development as a platform technology for many therapeutic drug products.  相似文献   

14.
Various amounts of Ovalbumin (OVA) were encapsulated into positively and negatively charged multilamellar liposomes, with the aim to investigate the entrapment efficiency in different buffers and to study their effects on the liposome size and zeta potential. Results showed that the entrapment efficiency of OVA in anionic liposomes was the same in 10 mM Phosphate Buffer (PB) as in Phosphate-Buffered Saline (PBS; PB?+?0.15 M NaCl). Also, liposome size was approximately 1200 nm for all anionic liposomes incorporating OVA. The entrapment efficiency of OVA in cationic liposomes was highly dependent on ionic strength. The size of cationic liposomes was approximately 1200 nm in PBS, regardless of protein content, but increased with the amount of the incorporated protein in PB. Aggregation of cationic liposomes in PB was observed when the mass of the protein was 2.5 mg or greater. The zeta potential of anionic liposomes was negative and of cationic liposomes positive in the whole range of protein mass tested. These results show how different compositions of lipid and aqueous phases can be used to vary the entrapment efficiency, liposome size, and zeta potential—the factors that are of great importance for the use of liposomes as drug carriers.  相似文献   

15.
In order to synthesize a bioeffective hormonotoxin for selective targeting to specific cells in the gonads, gelonin, a single chain ribosome-inactivating protein obtained from an Indian plant called Gelonium multiflorum was covalently linked to ovine luteinizing hormone (oLH) by a disulfide bond. Ovine LH-S-S-gelonin conjugates of different molar ratios were subjected to determine the ribosome-inactivating property in a cell-free translation assay using rabbit reticulocyte lysate system. A single amino group modification with N-succinimidyl-3-(2-pyridyldithio)propionate resulted in a loss of 90% protein synthesis inhibition activity. Upon conjugation of gelonin to oLH, the activity was further inhibited ranging from 2.5-6.4%. A 1:1 to 1:1.5 molar ratio (oLH-S-S-gelonin) conjugates showed 2.5-4.6% activity while 1:2.8 to 1:2.2 molar ratio exhibited 5.5-6.4% inhibition ability.  相似文献   

16.
The abortifacient proteins trichosanthin, alpha-momorcharin and beta-momorcharin at nM concentrations inhibit cell-free protein synthesis. The momorcharins and the ribosome-inactivating proteins isolated from Momordica charantia seeds cross-react with the respective antisera. The ribosome-inactivating proteins saporins, pokeweed antiviral protein (PAP) and, to a lesser extent, gelonin have abortifacient activity on pregnant mice.  相似文献   

17.
Summary Monoclonal antibody 14G2a (anti-GD2) reacts with cell lines and tumor tissues of neuroectodermal origin that express disialoganglioside GD2. mAb 14G2a was coupled to the ribosome-inactivating plant toxin gelonin with the heterobifunctional cross-linking reagentN-succinimidyl-3(2-pyridyldithio)propionate. The activity of the immunotoxin was assessed by a cell-free translation assay that confirmed the presence of active gelonin coupled to 14G2a. Data from an enzyme-linked immunosorbent assay demonstrated the specificity and immunoreactivity of the 14G2a-gelonin immunotoxin, which was identical to that of native 14G2a. Assays for complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC) revealed that these functional properties of the native 14G2a antibody were also preserved in the 14G2a-gelonin immunotoxin. The gelonin-14G2a immunotoxin was directly cytotoxic to human melanoma (A375-M and AAB-527) cells and was 1000-fold more active than native gelonin in inhibiting the growth of human melanoma cells in vitro. The augmentation of tumor cell killing of 14G2a-gelonin immunotoxin was examined with several lysosomotropic compounds. Chloroquine and monensin, when combined with 14G2a-gelonin immunotoxin, augmented its cytotoxicity more than 10-fold. Biological response modifiers such as tumor necrosis factor and interferon and chemotherapeutic agents such as cisplatinum andN,N-bis(2-chloroethyl)-N-nitrosourea (carmustine) augmented the cytotoxicity of 14G2a-gelonin 4- to 5-fold. The results of these studies suggest that 14G2a-gelonin may operate directly by both cytotoxic efforts and indirectly by mediating both ADCC and CDC activity against tumor cells; thus it may prove useful in the future for therapy of human neuroectodermal tumors.Research conducted, in part, by the Clayton Foundation for Research  相似文献   

18.
Synergistic effect of combined antibodies targeting distinct epitopes of a particular tumour antigen has encouraged some clinical trial studies and is now considered as an effective platform for cancer therapy. Providing several advantages over conventional antibodies, variable domain of heavy chain of heavy chain antibodies (VHH) is now major tools in diagnostic and therapeutic applications. Active targeting of liposomal drugs is a promising strategy, resulting in enhanced binding and improved cytotoxicity of tumour cells. In the present study, we produced four anti-HER2 recombinant VHHs and purified them via native and refolding method. ELISA and flow cytometry analysis confirmed almost identical function of VHHs in refolded and native states. Using a mixture of four purified VHHs, PEGylated liposomal doxorubicin was targeted against HER2-overexpressing cells. The drug release was analyzed at pH 7.4, 6.4 and 5.5 and dynamic light-scattering detector and TEM micrograph was applied to characterize the produced nanoparticles. The binding efficiency of these nanoparticles to BT474 and SKBR3 as HER2-positive and MCF10A as HER2-negative cell line was examined by flow cytometry. Our results indicated effective encapsulation of about 94% of the total drug in immunoliposomes. Flow cytometry results verified receptor-specific binding of targeted liposomes to SKBR3 and BT474 cell lines and more efficient binding was observed for liposomes conjugated with oligoclonal VHHs mixture compared with monoclonal VHH-targeted liposomes. Oligoclonal nanoparticles also showed more cytotoxicity compared with non-targeted liposomes against HER2-positive tumour cells. Oligoclonal targeting of liposomes was represented as a promising strategy for the treatment of HER2-overexpressing breast cancers.  相似文献   

19.
Gelonin is a single-chain ribosome-inactivating protein that can hydrolyze the glycosidic bond of a highly conserved adenosine residue in the sarcin/ricin domain (SRD) of the largest RNA in ribosome and thus irreversibly inhibit protein synthesis. Recently, the specificity in substrate recognition was challenged by the fact that gelonin could remove adenines from some other oligoribonucleotide substrates. However, the site specificity of gelonin to deadenylate various substrates were unknown. Hereby, the effect of pH values upon site specificity of the deadenylation activity of gelonin was studied using the synthetic oligoribonucleotide (named SRD RNA) that mimicked the ribosomal SRD. Interestingly, gelonin gradually acquired the ability to nonspecifically remove adenines from SRD RNA when pH values changed from neutral to acidic conditions. Another two SRD RNA mutants, either with the conserved adenosine deleted or with the tetraloop converted, showed very similar cleavage style to wild-type SRD RNA, underscoring the important role of pH value in site specificity of recognition by gelonin. Furthermore, the RNA N-glycosidase activity of gelonin was also enhanced with the decreasing of pH values. In addition, no obvious change was observed in the molecular conformation of gelonin at various pH values. Taken together, our data implied that the protonation of adenosines in SRD RNA was potentially an important factor for the nonspecific deadenlyation by gelonin.  相似文献   

20.
Drug delivery to the lymphatic system may be important in terms of the treatment with lymphatic involvement, such as tumor metastases and immunization. Especially, drug transport via the intestinal lymphatics after oral administration has been attracted lots of interests. The purpose of this study was to prepare cyclosporin A (CSA)-loaded liposomes, with different characteristics, and evaluate their ucoadhesivity. Three liposome preparations were formulated: cationic stearylamine liposomes (SA-Lip), anionic phosphatidylserine liposomes (PS-Lip), polymer (chitosan)-coated liposomes (CS-Lip), and characterized. The liposome preparations were found to be spherical in shape, with PS-Lip being the smallest. The liposome preparations exhibited entrapment efficiencies in the order: PS-Lip (52.5±2.9%)>SA-Lip (48.8±3.3%)> CS-Lip (41.7±4.2%). Finally, mucoadhesive tests were carried out using rat intestine, with SA-Lip (67%) showing the best adhesive rate of the three preparations (PS-Lip: 56%, CS-Lip: 61%). These results suggest that a positive charge on the surface of drug carriers may be an important factor for the intestinal drug delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号