首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Force development in skeletal muscle is driven by an increase in myoplasmic free [Ca2+]i ([Ca2+]i) due to Ca2+ release from the sarcoplasmic reticulum (SR). The magnitude of [Ca2+]i elevation during stimulation depends on: (a) the rate of Ca2+ release from the SR; (b) the rate of Ca2+ uptake by the SR; and (c) the myoplasmic Ca2+ buffering. We have used fluorescent Ca2+ indicators to measure [Ca2+]i in intact, single fibres from mouse and Xenopus muscles under conditions where one or more of the above factors are changed. The following interventions resulted in increased tetanic [Ca2+]i: beta-adrenergic stimulation, which potentiates the SR Ca2+ release; application of 2.5-di(tert-butyl)-1,4-benzohydroquinone, which inhibits SR Ca2+ pumps; application of caffeine, which facilitates SR Ca2+ release and inhibits SR Ca2+ uptake; early fatigue, where the rate of SR Ca2+ uptake is reduced; acidosis, which reduces both the myoplasmic Ca2+ buffering and the rate of SR Ca2+ uptake. Reduced tetanic [Ca2+]i was observed in late fatigue, due to reduced SR Ca2+ release, and in alkalosis, due to increased myoplasmic Ca2+ buffering. Force is monotonically related to [Ca2+]i but depends also on the myofibrillar Ca2+ sensitivity and the maximum force cross-bridges can produce. This is clearly illustrated by changes of intracellular pH where, despite a lower tetanic [Ca2+]i, tetanic force is higher in alkalosis than acidosis due to increases of myofibrillar Ca2+ sensitivity and maximum cross-bridge force.  相似文献   

2.
The purpose of this study was to investigate myofibrillar mechanisms of depressed contractile function associated with myocardial stunning. We first tested whether the degree of stunning was directly related to changes in myofilament Ca2+ sensitivity. Variable degrees and durations of low-flow ischemia were followed by 30 minutes of reperfusion in an open-chest porcine model of regional myocardial stunning (n = 27). Ca2+ sensitivity of isometric tension was measured in skinned myocytes obtained from endocardial biopsies taken during control aerobic flow and after 30 minutes of reperfusion. The degree of stunning, as assessed by percent systolic wall thickening, ranged from -3% to 75% of control but did not correlate (r = .11) with changes in pCa50, ie, pCa for half-maximal tension. Only in the group (n = 10) with the most severe level of ischemia was there a significant decrease in pCa50 (from 5.97 +/- 0.06 in the control condition to 5.86 +/- 0.07 after ischemia, P < .05). Less severe levels of ischemia (n = 17) resulted in significant stunning (percent systolic wall thickening, 38 +/- 4% of control) but no change in pCa50. To investigate the possibility that alterations in myofibrillar cross-bridge kinetics contribute to depressed function in stunning, maximum velocity of shortening (Vo) was measured in postischemic myocytes. Vo in postischemic myocytes was reduced to 56 +/- 4% of Vo in control myocytes and was independent both of the degree of stunning (r = .26) and changes in Ca2+ sensitivity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Isometric ATP consumption and force were investigated in mechanically skinned fibres from iliofibularis muscle of Xenopus laevis. Measurements were performed at different [Ca2+], in the presence and absence of caffeine (5 nM). In weakly Ca2+-buffered solutions without caffeine, spontaneous oscillations in force and ATPase activity occurred. The repetition frequency was [Ca2+]-and temperature-dependent. The Ca2+ threshold (+/- SEM) for the oscillations corresponded to a pCa of 6.5 +/- 0.1. The maximum ATP consumption associated with calcium uptake by the sarcoplasmic reticulum (SR) reached during the oscillations was similar to the activity under steady-state conditions at saturating calcium concentrations in the presence of caffeine. Maximum activity was reached when the force relaxation was almost complete. The calculated amount of Ca2+ taken up by the SR during a complete cycle corresponded to 5.4 +/ 0.4 mmol per litre cell volume. In strongly Ca2+-buffered solutions, caffeine enhanced the calcium sensitivity of the contractile apparatus and, at low calcium concentrations, SR Ca uptake. These results suggest that when the SR is heavily loaded by net Ca uptake, there is a massive calcium-induced calcium release. Subsequent net Ca uptake by the SR then gives rise to the periodic nature of the calcium transient.  相似文献   

4.
1. The effect of cilostazol, an inhibitor of phosphodiesterase type III (PDE III), on the contraction induced by histamine was studied by making simultaneous measurements of isometric force and the intracellular concentration of Ca2+ ([Ca2+]i) in endothelium-denuded muscle strips from the peripheral part of the middle cerebral artery of the rabbit. 2. High K+ (80 mM) produced a phasic, followed by a tonic increase in both [Ca2+]i and force. Cilostazol (10 microM) did not modify the resting [Ca2+]i, but it did significantly decrease the tonic contraction induced by high K+ without a corresponding change in the [Ca2+]i response. 3. Histamine (3 microM) produced a phasic, followed by a tonic increase in both [Ca2+]i and force. Cilostazol (3 and 10 microM) significantly reduced both the phasic and tonic increases in [Ca2+]i and force induced by histamine, in a concentration-dependent manner. 4. Rp-adenosine-3':5'-cyclic monophosphorothioate (Rp-cAMPS, 0.1 mM), a PDE-resistant inhibitor of protein kinase A (and as such a cyclic AMP antagonist), did not modify the increases in [Ca2+]i and force induced by histamine alone, but it did significantly decrease the cilostazol-induced inhibition of the histamine-induced responses. 5. In Ca2+-free solution containing 2 mM EGTA, both histamine (3 microM) and caffeine (10 mM) transiently increased [Ca2+]i and force. Cilostazol (1-10 microM) (i) significantly reduced the increases in [Ca2+]i and force induced by histamine, and (ii) significantly reduced the increase in force but not the increase in [Ca2+]i induced by caffeine. 6. In ryanodine-treated strips, which had functionally lost the histamine-sensitive Ca2+ storage sites, histamine (3 microM) slowly increased [Ca2+]i and force. Cilostazol (3 and 10 microM) lowered the resting [Ca2+]i, but did not modify the histamine-induced increase in [Ca2+]i, suggesting that functional Ca2+ storage sites are required for the cilostazol-induced inhibition of histamine-induced Ca2+ mobilization. 7. The [Ca2+]i-force relationship was obtained in ryanodine-treated strips by applying ascending concentrations of Ca2+ (0.16-2.6 mM) in Ca2+-free solution containing 100 mM K+. Histamine (3 microM) shifted the [Ca2+]i-force relationship to the left and increased the maximum Ca2+-induced force. Under the same conditions, whether in the presence or absence of 3 microM histamine, cilostazol (3-10 microM) shifted the [Ca2+]i-force relationship to the right without producing a change in the maximum Ca2+-induced force. 8. It is concluded that, in smooth muscle of the peripheral part of the rabbit middle cerebral artery, cilostazol attenuates the histamine-induced contraction both by inhibiting histamine-induced Ca2+ mobilization and by reducing the myofilament Ca2+ sensitivity. It is suggested that the increase in the cellular concentration of cyclic AMP that will follow the inhibition of PDE III may play an important role in the cilostazol-induced inhibition of the histamine-contraction.  相似文献   

5.
OBJECTIVES: The aim was to determine whether, and by what mechanism(s), a novel inotropic agent 5-methyl-6-phenyl-1,3,5,6-tetrahydro-3, 6-methano-1,5-benzodiazocine-2,4-dione (BA 41899) and its enantiomers directly alter the Ca2+ sensitivity of cardiac myofilaments. METHODS: Porcine ventricular trabeculae were permeabilised with Triton X-100. The relationship between force and pCa (-log[Ca2+]) was determined in the presence and absence of ATP. Troponin I was extracted, using vanadate, to produce unregulated maximally activated myofilaments. Force and actomyosin ATPase activity were measured simultaneously to determine tension cost (ATPase activity/tension). The effects of the (+) enantiomer (CGP 48506) on the twitch of intact muscle were demonstrated using rat papillary muscle. RESULTS: 100 microM BA 41899 had a pronounced Ca2+ sensitising effect on force production by porcine skinned cardiac fibres, increasing the pCa required for 50% maximal activation by 0.64 units, while suppressing maximum force by 18.3%. Resting tension was unaffected. These actions were primarily caused by CGP 48506 and were concentration dependent. At concentrations less than 100 microM, CGP 48506 also increased twitch amplitude in intact papillary muscles with no effect on resting tension, whereas 100 microM CGP 48506 increased resting force due to a slowing of relaxation. 100 microM CGP 48506 potentiated Ca(2+)-independent rigor tension in skinned trabeculae, indicating a Ca2+ sensitising mechanism unrelated to Ca2+ binding to troponin C. Tension cost was unaffected by 100 microM CGP 48506 over the entire range of activating Ca2+ concentrations. Suppression of maximum force by CGP 48506 was independent of both Ca2+ concentration and the regulatory troponin complex. CONCLUSIONS: Both the increase in Ca2+ sensitivity during submaximal activation and the depression of maximum force which are induced by CGP 48506 in skinned trabeculae occur at least partly through Ca(2+)-independent mechanisms.  相似文献   

6.
In this study, passive Ca2+ binding was determined in ventricular homogenates (VH) from neonatal (4-6 days) and adult rats, as well as in digitonin-permeabilized adult ventricular myocytes. Ca2+ binding sites, both endogenous and exogenous (Indo-1 and BAPTA) were titrated. Sarcoplasmic reticulum and mitochondrial Ca2+ uptake were blocked by thapsigargin and Ru360, respectively. Free [Ca2+] ([Ca2+]F) was measured with Indo-1 and bound Ca2+ ([Ca2+]B) was the difference between [Ca2+]F and total Ca2+. Apparent Ca2+ dissociation constants (Kd) for BAPTA and Indo-1 were increased by 10-20 mg VH protein/ml (from 0.35 to 0.92 microM for Indo-1 and from 0.20 to 0.76 microM for BAPTA) and also by ruthenium red in the case of Indo-1. Titration with successive CaCl2 additions (2.5-10 nmoles) yielded delta[Ca2+]B/delta[Ca2+]F for the sum of [Ca2+]B at all three classes of binding sites. From this function, the apparent number of endogenous sites (Ben) and their Kd (Ken) were determined. Similar Ken values were obtained in neonatal and adult VH, as well as in adult myocytes (0.68 +/- 0.14 microM, 0.69 +/- 0.13 microM and 0.53 +/- 0.10 microM, respectively). However, Ben was significantly higher in adult myocytes than in adult VH (1.73 +/- 0.35 versus 0.70 +/- 0.12 nmol/mg protein, P < 0.01), which correspond to approximately 300 and 213 mumol/l cytosol. This indicates that binding sites are more concentrated in myocytes than in other ventricular components and that Ben determined in VH underestimates cellular Ben by 29%. Although Ben values in nmol/mg protein were similar in adult and neonatal VH (0.69 +/- 0.12), protein content was much higher in adult ventricle (125 +/- 7 versus 80 +/- 1 mg protein/g wet weight, P < 0.01). Expressing Ben per unit cell volume (accounting for fractional mitochondrial volume, and 29% dilution in homogenate), the passive Ca2+ binding capacity at high-affinity sites is approximately 300 and 176 mmol/l cytosol in adult and neonatal rat ventricular myocytes, respectively. Additional estimates suggest that passive Ca2+ buffering capacity in rat ventricle increases markedly during the first two weeks of life and that adult levels are attained by the end of the first month.  相似文献   

7.
Mature myocardium utilizes calcium released by the sarcoplasmic reticulum (SR) for cell contraction. Transient exposure of mature myocytes to caffeine is known to directly trigger Ca2+ release from the SR. In contrast, neonatal rabbit heart cells rely on transsarcolemmal Ca2+ influx for tension generation. SR function is decreased in immature heart and appears to play a minimal role as a calcium source. Accordingly, we hypothesized that neonatal rabbit myocytes would not respond to a caffeine pulse. Isolated neonatal and adult myocytes were paced to load the SR with calcium and then exposed to a 1-s pulse of 10 mM caffeine. As previously described, adult myocytes exhibited a brisk contraction in response to caffeine. Unexpectedly, neonatal myocytes also exhibited a similar, brisk response. These caffeine-induced contractions were not dependent on extracellular Ca2+ but were dependent upon the loading of SR Ca2+ stores. When SR Ca2+ stores were depleted by exposure to caffeine, mature myocytes exhibited only small, slow contractions in response to electrical field stimulation. Replenishing the SR Ca2+ stores resulted in normal, brisk contractions. In contrast, electrically stimulated contractions in immature myocytes were largely unaffected by caffeine-induced SR depletion. Thus, although neonatal myocytes are capable of loading and releasing calcium from the SR, such SR calcium release is not normally required for contraction in the developing heart. The minor role of SR Ca2+ release in immature rabbit heart may not result from immaturity of the SR, but rather from an inadequate mechanism to trigger SR calcium release.  相似文献   

8.
Phalloidin was shown to increase the ATPase activity and Ca2+ sensitivity of both bovine cardiac and rabbit psoas myofibrils when assayed in a solution containing 50 mM KCl, 100 mM MOPS (pH 7.0), 2 mM MgCl2, 1 mM ATP, 2 mM EGTA, and varying concentrations of Ca2+ (temperature 21-22 degrees C). The phalloidin effect in cardiac myofibrils developed over a time course of several minutes in the presence of 50 microM phalloidin. Relative increase of ATPase activity was maximal at pCa 8 and decreased with decrease in pCa. In cardiac myofibrils the increase was about 70% at pCa 8 and 20% at pCa 4 following 20-30 min pre-incubation with 2 microM or 50 microM phalloidin. The effect persisted after excess phalloidin was washed out. The increase in Ca2+ sensitivity was approximately 0.15 pCa units. For skeletal myofibrils treated with 2 microM phalloidin all changes were considerably less than those seen with cardiac myofibrils and the changes were even less when the myofibrils were exposed to 50 microM phalloidin. These results show that when specifically bound to actin, phalloidin can change the kinetic parameters of the cross-bridge cycle and may also alter the Ca2+ sensitivity of the contractile system. The effects of phalloidin seem to vary with muscle type.  相似文献   

9.
Changes in action potential parameters by and inotropic responses to nicardipine, verapamil, ryanodine and cyclopiazonic acid were examined in isolated ventricular myocardial preparations from neonatal and adult mice. The action potential of both neonatal and adult mice had a unique configuration with little evidence of a plateau at depolarized membrane potential; the action potential duration was significantly larger in neonatal preparations. Nicardipine had no effect on action potential parameters in the adult while it significantly shortened the action potential duration at 50% repolarization in the neonate. Ryanodine significantly shortened the action potential duration at 80% repolarization at both ages: the shortening was significantly larger in the adult when compared with the neonate. The contraction of ventricular preparations from adult mice were relatively resistant to nicardipine and verapamil. Nicardipine or verapamil, even at 10(-5) M, only decreased the contractile force to 70% of control values; the decrease was much less than that reported in other experimental species such as chick, guinea pig or rabbit. In the neonate, 10(-5) M nicardipine or verapamil decreased the contractile force to 30% of control values. Ryanodine had a potent negative inotropic effect both in the neonate and adult; the effect was significantly larger in the adult. Cyclopiazonic acid produced a decrease in contractile force and prolongation of the time required for relaxation; both effects were significantly larger in the adult. These results suggest that the contraction of the adult mouse myocardium is highly dependent on SR function and less dependent on transsarcolemmal Ca2+ influx when compared with the myocardium of the neonatal mouse and that of other species.  相似文献   

10.
Tonic rabbit femoral artery and phasic rabbit ileum smooth muscles permeabilized with Triton X-100 were activated either by increasing [Ca2+] from pCa > 8.0 to pCa 6.0 (calcium-ascending protocol) or contracted at pCa 6.0 before lowering [Ca2+] (calcium-descending protocol). The effects of, respectively, high [MgATP]/low [MgADP] [10 mM MgATP + creatine phosphate (CP) + creatine kinase (CK)] or low [MgATP]/[MgADP] (2 mM MgATP, 0 CP, 0 CK) on the "force-[Ca]" relationships were determined. In femoral artery at low, but not at high, [MgATP]/[MgADP] the force and the ratio of stiffness/force at pCa 7.2 were significantly higher under the calcium-descending than calcium-ascending protocols (54% vs. 3% of Po, the force at pCa 6.0) (force hysteresis); the levels of regulatory myosin light chain (MLC20) phosphorylation (9 +/- 2% vs. 10 +/- 2%) and the velocities of unloaded shortening V0 (0.02 +/- 0.004 l/s with both protocols) were not significantly different. No significant force hysteresis was detected in rabbit ileum under either of these experimental conditions. [MgADP], measured in extracts of permeabilized femoral artery strips by two methods, was 130-140 microM during maintained force under the calcium-descending protocol. Exogenous CP (10 mM) applied during the descending protocol reduced endogenous [MgADP] to 46 +/- 10 microM and abolished force hysteresis: residual force at low [Ca2+] was 17 +/- 5% of maximal force. We conclude that the proportion of force-generating nonphosphorylated (AMdp) relative to phosphorylated cross-bridges is higher on the Ca2+-descending than on the Ca2+-ascending force curve in tonic smooth muscle, that this population of positively strained dephosphorylated cross-bridges has a high affinity for MgADP, and that the dephosphorylated AMdp . MgADP state makes a significant contribution to force maintenance at low levels of MLC20 phosphorylation.  相似文献   

11.
The phosphatase inhibitor okadaic acid (OA) was used to study the relationship between [Ca2+], rates of phosphorylation/dephosphorylation and the mechanical properties of smooth muscle fibres. Force/velocity relationships were determined with the isotonic quick release technique in chemically skinned guinea-pig taenia coli muscles at 22 degrees C. In the maximally thiophosphorylated muscle neither OA (10 microM) nor Ca2+ (increase from pCa 9.0 to pCa 4.5) influenced the force-velocity relationship. When the degree of activation was altered by varying [Ca2+] in the presence of 0.5 microM calmodulin, both force and the maximal shortening velocity (Vmax) were altered. At pCa 5.75, at which force was about 35% of the maximal at pCa 4.5, Vmax was 55% of the maximal value. When OA was introduced into fibres at pCa 6.0, force was increased from less than 5% to 100% of the maximal force obtained in pCa 4.5. The relationship between the degree of myosin light chain phosphorylation and force was similar in the two types of activation; varied [OA] at constant [Ca2+] and at varied [Ca2+]. The relation between force and Vmax when the degree of activation was altered with OA was almost identical to that obtained with varied [Ca2+]. The results show that Ca2+ and OA do not influence force or Vmax in the maximally phosphorylated state and suggest that the level of myosin light chain phosphorylation is the major factor determining Vmax. The finding that the relationship between force and Vmax was similar when activation was altered with OA and Ca2+ suggests, however, that alterations in the absolute rates of phosphorylation and dephosphorylation at a constant phosphorylation level do not influence the mechanical properties of the skinned smooth muscle fibres.  相似文献   

12.
Cardiac troponin (Tn) I (CTnI), compared with skeletal TnI, contains extra amino acids (32 to 33) at its amino terminus, including two adjacent serine residues. These two serine residues are believed to be phosphorylated by protein kinase A (PKA) upon stimulation of the heart by beta-agonists. In this study, we found that phosphorylation of a cardiac skinned muscle preparation by PKA, mainly at CTnI, results in a decrease in the Ca2+ sensitivity of muscle contraction. The pCa50 decreased by approximately 0.27 +/- 0.06 pCa units upon phosphorylation. To study cardiac muscle relaxation, we used diazo-2, a photolabile Ca2+ chelator with a low Ca2+ affinity in its intact form that is converted to a high-affinity form after photolysis. We found that the rate of cardiac muscle relaxation increased from a time of half-relaxation (t1/2) = 110 +/- 10 milliseconds to t1/2 = 70 +/- 8 milliseconds after CTnI phosphorylation. This result demonstrates that CTnI phosphorylation can be linked with the increased rate of muscle relaxation in a relatively intact muscle preparation. Since CTnI phosphorylation has been shown previously to affect the Ca2+ affinity and Ca2+ off-rate of CTnC in vitro, it is likely that the faster relaxation seen here reflects faster dissociation of Ca2+ from cardiac TnC (CTnC). Model calculations show that increased dissociation of Ca2+ from CTnC, coupled with the faster uptake of Ca2+ by the sarcoplasmic reticulum stimulated by PKA phosphorylation of phospholamban, can account for the faster relaxation seen in the inotropic response of the heart to catecholamines.  相似文献   

13.
To study the effects of stretch on the function of rat left atrium, we recorded contraction force, calcium transients, and intracellular action potentials (APs) during stretch manipulations. The stretch of the atrium was controlled by intra-atrial pressure. The Frank-Starling behavior of the atrium was manifested as a biphasic increase of the contraction force after increasing the stretch level. The development of the contraction force after step increase of the stretch (intra-atrial pressure from 1 to 3 mm Hg) was accompanied by the increase in the amplitude of the calcium transients (P<0.05, n=4) and decrease in the time constant of the Ca2+ transient decay. The APs of the individual myocytes were also affected by stretch; the duration of the AP was decreased at positive voltages (AP duration at 15% repolarization level, P<0.001; n=13) and increased at negative voltages (AP duration at 90% repolarization level, P<0. 01; n=13). To study the mechanisms causing these changes we developed a mathematical model describing [Ca2+]i and electrical behavior of single rat atrial myocytes. Stretch was simulated in the model by increasing the troponin (TnC) sensitivity and/or applying a stretch-activated (SA) calcium influx. We mimicked the Ca2+ influx by introducing a nonselective cationic conductance, the SA channels, into the membrane. Neither of the 2 plausible mechanosensors (TnC or SA channels) alone could produce similar changes in the Ca2+ transients or APs as seen in the experiments. The model simulated the effects of stretch seen in experiments best when both the TnC affinity and the SA conductance activation were applied simultaneously. The SA channel activation led to gradual augmentation of Ca2+ transients, which modulated the APs through increased Na+/Ca2+-exchanger inward current. The role of TnC affinity change was to modulate the Ca2+ transients, stabilize the diastolic [Ca2+]i, and presumably to produce the immediate increase of the contraction force after stretch seen in experiments. Furthermore, we found that the same mechanism that caused the normal physiological responses to stretch could also generate arrhythmogenic afterpotentials at high stretch levels in the model.  相似文献   

14.
Atrial and ventricular myocytes 200 to 300 microm long containing one to five myofibrils are isolated from frog hearts. After a cell is caught and held between two suction micropipettes the surface membrane is destroyed by briefly jetting relaxing solution containing 0.05% Triton X-100 on it from a third micropipette. Jetting buffered Ca2+ from other pipettes produces sustained contractions that relax completely on cessation. The pCa/force relationship is determined at 20 degrees C by perfusing a closely spaced sequence of pCa concentrations (pCa = -log[Ca2+]) past the skinned myocyte. At each step in the pCa series quick release of the myocyte length defines the tension baseline and quick restretch allows the kinetics of the return to steady tension to be observed. The pCa/force data fit to the Hill equation for atrial and ventricular myocytes yield, respectively, a pK (curve midpoint) of 5.86 +/- 0.03 (mean +/- SE.; n = 7) and 5.87 +/- 0.02 (n = 18) and an nH (slope) of 4.3 +/- 0.34 and 5.1 +/- 0.35. These slopes are about double those reported previously, suggesting that the cooperativity of Ca2+ activation in frog cardiac myofibrils is as strong as in fast skeletal muscle. The shape of the pCa/force relationship differs from that usually reported for skeletal muscle in that it closely follows the ideal fitted Hill plot with a single slope while that of skeletal muscle appears steeper in the lower than in the upper half. The rate of tension redevelopment following release restretch protocol increases with Ca2+ >10-fold and continues to rise after Ca2+ activated tension saturates. This finding provides support for a strong kinetic mechanism of force regulation by Ca2+ in frog cardiac muscle, at variance with previous reports on mammalian heart muscle. The maximum rate of tension redevelopment following restretch is approximately twofold faster for atrial than for ventricular myocytes, in accord with the idea that the intrinsic speed of the contractile proteins is faster in atrial than in ventricular myocardium.  相似文献   

15.
The purpose of the present study was to determine developmental changes in the effect of respiratory acidosis on vascular smooth muscle contraction. Vessel diameter, intracellular pH (pHi), and calcium concentration ([Ca]i) were measured in a cannulated preparation of the small mesenteric artery of newborn and adult rabbits. In the artery precontracted by high KCl, acidosis caused a vasorelaxation both in the newborn and the adult; the vasorelaxation was greater in the newborn than in the adult. The fura-2 fluorescence ratio, an indicator of [Ca]i, decreased transiently during acidosis and the decrease was similar in the two age groups. In the artery precontracted by norepinephrine, acidosis caused a transient vasoconstriction in the adult and a vasorelaxation in the newborn. In these vessels, the fura-2 fluorescence ratio increased transiently during acidosis; the increase was similar in the two groups. Upon induction of acidosis, pHi fell rapidly in the artery precontracted by norepinephrine or high KCl, and the depression of pHi was similar in the two groups. In the skinned smooth muscle preparation, a tension-[Ca] relationship curve at pH 7.1 was not significantly different from that at pH 6.8 in the adult. In the newborn, the tension-[Ca] curve at pH 6.8 was shifted to the right, compared with that at pH 7.1. These data suggest that the vasorelaxant effect of respiratory acidosis in the premature vessel is greater than in the adult. The greater vasorelaxation in the newborn cannot be explained by the age-related difference in pHi or [Ca]i during acidosis. The greater sensitivity of myofibrils to low pHi in the newborn may, at least in part, be responsible for the greater vasorelaxation in this age group.  相似文献   

16.
Intracellular Ca2+ was determined with the fura-2 technique during electrically induced contractions in the rabbit rectococcygeus smooth muscle at 22 degreesC. The muscles were electrically activated to give short, reproducible contractions. Intracellular [Ca2+] increased during activation; the increase in [Ca2+] preceded force development by approximately 2 s. After cessation of stimulation Ca2+ fell, preceding the fall in force by approximately 4 s. The fluorescence properties of fura-2 were determined with time-resolved spectroscopy using synchrotron light at the MAX-storage ring, Lund, Sweden. The fluorescence decay of free fura-2 was best described by two exponential decays (time constants approximately 0.5 and 1.5 ns) at low Ca2+ (pCa 9). At high Ca2+ (pCa 4.5), fluorescence decay became slower and could be fitted by one exponential decay (1.9 ns). Time-resolved anisotropy of free fura-2 was characteristic of free rotational motion (correlation time 0.3 ns). Motion of fura-2 could be markedly inhibited by high concentrations of creatine kinase. Time-resolved spectroscopy measurements of muscle fibers loaded with fura-2 showed that the fluorescence lifetime of the probe was longer, suggesting an influence of the chemical environment. Anisotropy measurements revealed, however, that the probe was mobile in the cells. The Ca2+-dependence of contraction and relaxation was studied using a photolabile calcium chelator, diazo-2, which could be loaded into the muscle cells in a similar manner as fura-2. Photolysis of diazo-2 leads to an increase in its Ca2+-affinity and a fall in free Ca2+. When muscles that had been loaded with diazo-2 were illuminated with UV light flashes during the rising phase of contraction, the rate of contraction became slower, suggesting a close relation between intracellular Ca2+ and the cross-bridge interaction. In contrast, photolysis during relaxation did not influence the rate of force decay, suggesting that relaxation of these contractions is not determined by the rate of Ca2+ removal or due to an increased Ca2+ sensitivity, but instead is limited by other processes such as deactivation by dephosphorylation or detachment of tension-bearing cross-bridges, possibly regulated by thin filament systems.  相似文献   

17.
The objective of this study was to further explore the cellular basis of the reduced rate and magnitude of contraction of feline left ventricular myocytes with severe hypertrophy induced by slow progressive pressure overload. A 3.0 mm internal diameter band was placed around the ascending aorta of 12 young (8-10 weeks old) cats, and sham operations were performed in 13 others. This caused no major pressure overload initially, but 15 weeks later there was a significant pressure gradient across the band (56+/-14 mmHg) and the heart weight to body weight ratio had increased from 4.2-7 gm/kg. Contraction rates and magnitudes of myocytes isolated from the hearts with hypertrophy (LVH) were significantly slower and smaller, respectively, than those from control (C) animals. Indo-1 fluorescence transients in LVH myocytes were significantly smaller in magnitude and longer in duration than in C, suggesting that contractile defects result from Ca2+ derangements. Elevation of bath Ca2+ increased the peak Indo-1 fluorescence and the rate and magnitude of contraction in all myocytes. At the bath Ca2+ which had maximal inotropic effects there were no differences in the peak Indo-1 fluorescence in LVH and C myocytes, but contraction magnitude remained significantly smaller in LVH. This suggests that there are Ca2+-independent contractile derangements in LVH. In support of this hypothesis, the relationship between contraction magnitude and the peak Indo-1 fluorescence (index of myofibrillar Ca2+ sensitivity) was significantly shifted in LVH myocytes, suggesting that myofibrillar Ca2+ sensitivity was reduced. There was also a significant shift of the terminal portions of hysteresis loops of cell length v indo-1 fluorescence ratio, providing additional support for this idea. Experiments with isoproterenol suggest that it can reduce myofibrillar Ca2+ sensitivity in C, but not LVH myocytes. The idea that increased internal resistance to shortening (internal load) is responsible for the contractile defects of LVH myocytes was examined by defining the relationship between the rate of relengthening and the magnitude of shortening. There was no significant difference in this relation between C and LVH myocytes. In addition, colchicine (which depolymerizes microtubular tubulin) had no significant effect on contraction magnitude in either C or LVH myocytes. These results suggest that the contractile properties of feline LVH myocytes result from changes in cellular Ca2+ regulation and myofibrillar Ca2+ sensitivity, but not from changes in the internal loading.  相似文献   

18.
Caffeine causes a [Ca2+]i increase in the cortex of Paramecium cells, followed by spillover with considerable attenuation, into central cell regions. From [Ca2+]resti approximately 50 to 80 nm, [Ca2+]acti rises within /=2 sec. Chelation of Ca2+o considerably attenuated [Ca2+]i increase. Therefore, caffeine may primarily mobilize cortical Ca2+ pools, superimposed by Ca2+ influx and spillover (particularly in tl cells with empty trichocyst docking sites). In nd cells, caffeine caused trichocyst contents to decondense internally (Ca2+-dependent stretching, normally occurring only after membrane fusion). With 7S cells this usually occurred only to a small extent, but with increasing frequency as [Ca2+]i signals were reduced by [Ca2+]o chelation. In this case, quenched-flow and ultrathin section or freeze-fracture analysis revealed dispersal of membrane components (without fusion) subsequent to internal contents decondensation, opposite to normal membrane fusion when a full [Ca2+]i signal was generated by caffeine stimulation (with Ca2+i and Ca2+o available). We conclude the following. (i) Caffeine can mobilize Ca2+ from cortical stores independent of the presence of Ca2+o. (ii) To yield adequate signals for normal exocytosis, Ca2+ release and Ca2+ influx both have to occur during caffeine stimulation. (iii) Insufficient [Ca2+]i increase entails caffeine-mediated access of Ca2+ to the secretory contents, thus causing their decondensation before membrane fusion can occur. (iv) Trichocyst decondensation in turn gives a signal for an unusual dissociation of docking/fusion components at the cell membrane. These observations imply different threshold [Ca2+]i-values for membrane fusion and contents discharge.  相似文献   

19.
Mechanisms of cytoplasmic calcium homeostasis were investigated in peripheral and central neurones isolated from neonatal, adult and old Wistar rats and in granule neurones in acutely prepared cerebellar slices of adult and old CBA mice. The cytoplasmic calcium concentration ([Ca2+]i) was measured by either indo-1-or fura-2-based microfluorimetry. The resting [Ca2+]i was significantly higher in senile neurones. The depolarization-induced [Ca2+]i transients were markedly altered in old neurones when compared with adult ones: the age-associated changes in stimulus-evoked [Ca2+]i signalling comprised of (i) significant decrease of the amplitudes of [Ca2+]i transients; (ii) prolongation of the rising phase and (iii) prominent deceleration of the recovery of the [Ca2+]i elevation towards the resting level after the end of depolarization. The amplitudes of calcium release from caffeine/Ca(2+)-sensitive endoplasmic reticulum calcium stores became significantly smaller in old central neurones, whereas they remained unaffected in peripheral neurones. Based on our observations we can conclude that ageing of the nervous system is associated with significant changes in mechanisms of [Ca2+]i homeostasis in individual neurones. These changes lead to a stable increase in the resting [Ca2+]i and to a substantial prolongation of stimulus-evoked [Ca2+]i signals. We could suggest also that the ability of the old neurones to handle Ca2+ loads is diminished, which may determine higher vulnerability of aged neurones to excess of calcium ions.  相似文献   

20.
In pancreatic acinar cells, as in many other cell types, the tumour promoter thapsigargin (TG) evokes a significant increase of intracellular free Ca2+ ([Ca2+]i). The increases of [Ca2+]i evoked by TG was associated with significant changes of plasma membrane Ca2+ permeability, with [Ca2+]i values following changes in extracellular [Ca2+]. Plasma membrane Ca2+ extrusion is activated rapidly as a consequence of the rise in [Ca2+]i evoked by TG and the rate of extrusion is linearly dependent on [Ca2+]i up to 1 microM Ca2+. In contrast, the activation of the Ca2+ entry pathway is delayed and the apparent rate of Ca2+ entry is independent of [Ca2+]i. In the presence of 20 mM caffeine, which reduces the resting levels of inositol trisphosphate (InsP3), the increase of [Ca2+]i evoked by TG was significantly reduced. The reduction was manifest both as a decrease of the amplitude of the [Ca2+]i peak (30% reduction) and, more importantly, as a reduction of the apparent maximal rate of [Ca2+]i increase (from 12.3 +/- 1.0 to 6.1 +/- 0.6 nM Ca2+/s). The inhibition evoked by caffeine was reversible and the removal of caffeine in the continuous presence of TG evoked a further increase of [Ca2+]i. The amplitude of the [Ca2+]i increase upon caffeine removal was reduced as a function of the time of TG exposure. Addition of TG in the presence of 1 mM La3+, which is known to inhibit the plasma membrane Ca(2+)-activated adenosine triphosphatase, induced a much higher peak of [Ca2+]i. This increase was associated with an augmentation of the apparent rate of [Ca2+]i increase (from 12.3 +/- 1.2 to 16.1 +/- 1.9 nM Ca2+/s).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号