首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
快开门式压力容器余压开门爆炸数值仿真研究   总被引:1,自引:0,他引:1  
据统计,快开门式压力容器爆炸事故约占压力容器事故总数的三分之一,且带压开门是引起爆炸的主要原因,因此针对其安全开展相关研究具有重要的意义。基于此,该文建立了快开门式压力容器余压爆炸数值计算模型,并进行了数值计算。计算结果(包括压力分布、速度分布、温度分布等)能直观显示快开门式压力容器爆炸过程。数值结果与试验结果进行了对比,结果表明,该模型具有较高精度,可以有效的预测快开门式压力容器的开门余压爆炸。  相似文献   

2.
建立球形容器与管道、2个球形容器与管道组成的2种形式的连通容器试验装置,研究初始压力对连通容器甲烷-空气混合物泄爆压力的影响。结果表明:连通容器内泄爆超压随初始压力增加而增大,并与初始压力近似成线性关系;对于2个球形容器与管道组成的连通容器,起爆容器的泄爆超压始终小于传爆容器;泄爆方式和点火方式对连通容器泄爆超压有较大影响,大容器点火时,2个容器的泄爆压力差随初始压力增加而增大,但小容器点火时,2个容器的泄爆压力差随初始压力的增加变化较小;初始压力对不同结构和尺寸的连通容器的泄爆压力的影响不同,当令初始压力对大容器点火时,小容器内泄爆压力受影响最大,而当对单球形容器与管道组成的连通容器的小容器点火时,小容器内泄爆压力受影响最小。  相似文献   

3.
Gas explosion in connected vessels usually leads to high pressure and high rate of pressure increase which the vessels and pipes can not tolerate. Severe human casualties and property losses may occur due to the variation characteristics of gas explosion pressure in connected vessels. To determine gas explosion strength, an experimental testing system for methane and air mixture explosion in a single vessel, in a single vessel connected a pipe and in connected vessels has been set up. The experiment apparatus consisted of two spherical vessels of 350 mm and 600 mm in diameter, three connecting pipes of 89 mm in diameter and 6 m in length. First, the results of gas explosion pressure in a single vessel and connected vessels were compared and analyzed. And then the development of gas explosion, its changing characteristics and relevant influencing factors were analyzed. When gas explosion occurs in a single vessel, the maximum explosion pressure and pressure growth rate with ignition at the center of a spherical vessel are higher than those with ignition on the inner-wall of the vessel. In conclusion, besides ignition source on the inner wall, the ignition source at the center of the vessels must be avoided to reduce the damage level. When the gas mixture is ignited in the large vessel, the maximum explosion pressure and explosion pressure rising rate in the small vessel raise. And the maximum explosion pressure and pressure rising rate in connected vessels are higher than those in the single containment vessel. So whenever possible, some isolation techniques, such as fast-acting valves, rotary valves, etc., might be applied to reduce explosion strength in the integrated system. However, when the gas mixture is ignited in the small vessel, the maximum explosion pressures in the large vessel and in the small vessel both decrease. Moreover, the explosion pressure is lower than that in the single vessel. When gas explosion happens in a single vessel connected to a pipe, the maximum explosion pressure occurs at the end of the pipe if the gas mixture is ignited in the spherical vessel. Therefore, installing a pipe into the system can reduce the maximum explosion pressure, but it also causes the explosion pressure growth rate to increase.  相似文献   

4.
大型相连容器中火焰传播的研究   总被引:1,自引:1,他引:0  
为了进一步了解相连装置中粉尘爆炸的火焰传播行为和压力发展,为该结构的安全防护设计提供有价值的信息,采用大型实验装置对相连容器中玉米淀粉/空气混合物爆炸时的火焰传播行为进行了实验研究,同时采用已开发的数值模型对实验进行仿真计算。实验表明:粉尘浓度的变化对粉尘爆炸的火焰传播行为有重要影响;在粉尘浓度很低的情况下,火焰仍然能够在管道中加速传播且爆炸发展的最终结果相当猛烈。数值模型采用欧拉-拉格朗日方法模拟两相流现象,通过求解非稳态的湍流两相反应流守恒方程对实验进行二维仿真,计算结果与实验结果符合性较好,表明该模型可以很好地应用于粉尘爆炸火焰传播的研究。  相似文献   

5.
To develop the application of explosion venting technology in high-pressure vessels, a new model for the design of dust explosion venting size was presented, which took the physicochemical phenomenon deriving from the elevation of the static activation pressure into account. Firstly, for confined pressure rise, the wall quenching effect originating from the dust flame thickness was considered by adopting the three-zone model. Secondly, for the venting pressure rise, the energy loss due to the discharge of high-energy burnt mixture (quantified as the specific surface area loss of the flame) was taken into account and the induced turbulence factor was introduced. Thirdly, for the venting pressure drop, a dynamic pressure relief capability evaluation model which takes into account the flame morphology evolution (tear-shaped flame) and the proportion of discharged mixture (relative volume ratio) at elevated activation pressure was proposed. The predicted maximum reduced pressure and venting size were checked against the PMMA explosion experiments and a more great performance was obtained compared with standards.  相似文献   

6.
为了研究富氧条件下不同泄爆面积对CH4燃烧诱导快速相变的影响,基于自主设计搭建的CH4燃烧诱导快速相变试验台,通过改变富氧系数和泄爆面积对CH4燃烧的压力振荡特性进行研究,分析了不同富氧系数E(0.21,0.3,0.4,0.6)及泄爆面积比(0,0.25,0.5,0.75,1)下CH4燃烧的压力峰值、到达压力峰值的时间及特征时间等参数的变化趋势。结果表明,随富氧系数增大,爆炸压力峰值逐渐增大。富氧系数E=0.21时,压力峰值低于相应的绝热压力,无压力振荡;当E=0.3时,压力峰值低于相应的绝热压力且伴随压力振荡。当E为0.4、0.6时,压力峰值高于相应绝热压力且伴随压力振荡;在泄爆条件下,随富氧系数增加,到达压力峰值的时间逐渐减小。通过分析不锈钢管道中的燃烧诱导快速相变现象,发现泄爆可以有效降低爆炸压力峰值,且随泄爆面积比增大,到达压力峰值的时间提前。  相似文献   

7.
为探究可应用于生产现场的硫化矿尘爆炸压力预测方法,基于硫化矿尘爆炸反应机理和粉尘引爆试验数据对硫化矿尘的氧化还原成分与其爆炸压力的相关关系进行分析。研究结果表明:硫化矿尘的还原成分指数与其爆炸压力的相关性极高,尤其是与其爆炸压力峰值的相关性系数高达0.993。整合研究结果形成的硫化矿尘爆炸压力和爆炸压力峰值计算和预测模型,可为金属矿山的硫化矿尘爆炸预防提供决策依据。  相似文献   

8.
Explosion isolation systems provide critical protection for interconnected vessels and work areas, preventing the spread of explosions through interconnecting pipes and ducts. These systems not only prevent propagating events, but also mitigate the elevated explosion hazards of interconnected vessels, related to pressure piling and enhanced turbulence. Explosion isolation systems can, however, fail catastrophically when they are not properly designed for a use case.Evaluating the performance of explosion isolation systems includes assessing their pressure resistance, flame-barrier efficacy, and determining appropriate installation distances, which typically requires extensive testing. To predict the performance of a system for use cases outside the tested conditions, models are needed to reliably predict both the explosion dynamics and the isolation system response.In this study, a physics-based model for explosion dynamics in vented vessel-pipe systems is developed and validated. An extensive series of large-scale validation experiments were conducted, including tests using an 8 m3 vessel with attached pipes, varying the pipe dimensions, ignition location, and mixture reactivity. The model accurately captures the effects of experimental parameters and predicts the time available for isolation systems to form a flame barrier. This model can help to predict installation distances and reduce the number of tests needed to comprehensively evaluate explosion isolation systems and their use cases.  相似文献   

9.
The flammability of refrigerants is a major cause of refrigerant explosion incidents. Studying the explosion characteristics of refrigerants at different initial temperatures can provide significant benefits for solving the safety problems of refrigerants under actual working conditions. This paper studied the effects of the initial temperature and refrigerant concentration on the explosion characteristics of refrigerant 2, 3, 3, 3-tetrafluoropropene (R1234yf) at 0.1 MPa. The curves of explosion characteristics with different initial temperature revealed the same variation trend ranged from 25 °C to 115 °C. Specifically, as the refrigerant concentration was raised, the peak overpressure, the maximum rate of pressure rise, and laminar burning velocity increased initially and decreased afterwards, along with maximum values at the refrigerant concentration of 7.6%. When the refrigerant concentration was 7.6%, the peak overpressure declined exponentially with the initial temperature rise, while the maximum rate of pressure rise increased linearly. The laminar burning velocity calculated from the spherical expansion method indicated that the flame propagation was gradually accelerated by the increase of initial temperature, which coincided with the change of the maximum rate of pressure rise. Meanwhile, experiments and CHEMKIN simulation results demonstrated the effects of elevated temperature from 20 °C to 50 °C on the explosion limits of R1234yf. The lower explosion limit reduced and the upper explosion limit increased with rising initial temperature. In general, R1234yf exhibited moderate combustion and lower explosion risk, compared with traditional refrigerants.  相似文献   

10.
为探究采空区遗煤、松散破碎岩块对瓦斯爆炸的影响,建立缝洞型管道模型,采用数值模拟与理论分析结合方法研究采空区内缝洞型管道内瓦斯爆炸的传播规律及管道长径比对瓦斯爆炸过程中速度与冲击波的影响。研究结果表明:在缝洞型结构内,随着火焰沿管道向前传播,各监测点速度逐渐变大、压力先增加后降低,而压力上升速率则表现出不规则的变化;缝洞结构加剧了火焰燃烧的剧烈程度,提高了管道内各监测点的温度峰值;在缝洞型管道内随长径比r增加,各监测点最大压力峰值以及速度大小依次降低。  相似文献   

11.
为了解尺寸对球形容器连接管道甲烷-空气混合物爆炸的影响规律,利用Fluent软件,采用κ-ε湍流模型、涡耗散模型(简称EDC模型)、壁面热耗散、热辐射模型及SIMPLE算法,建立了球形容器连接管道内甲烷-空气混合物爆炸的数值模型,对容器与管道内甲烷-空气预混气体爆炸的尺寸效应进行了数值模拟。结果表明:随管道内径增大,球形容器内最大爆炸压力逐渐增大,管道末端最大爆炸压力变化无明显规律;而随管道长度增加,球形容器内最大爆炸压力逐渐减小;改变管道内径,较大体积球形容器内最大爆炸压力均大于较小体积球形容器内最大爆炸压力,最大爆炸压力上升速率的规律则相反,容器体积对管道末端最大爆炸压力的影响无明显规律。  相似文献   

12.
为研究受限空间内甲烷-氢气-空气混合气体爆炸特性参数分布规律,在20 L球形压力容器装置内开展甲烷-氢气-空气混合气体爆炸实验,探究掺氢比变化对当量比为1的甲烷-氢气-空气混合气体爆炸过程的影响;运用Fluent数值模拟软件,采用标准k-ε湍流模型,结合层流有限速率燃烧模型,探究混合气体爆炸过程中燃烧特性(爆炸温度、压力、密度等)与反应时间的变化规律。研究结果表明:爆炸过程中,添加一定氢气时爆炸压力峰值、爆炸压力上升速率峰值增大,而到达峰值时间缩短;反应初期,中心点火处密度下降,反应釜各处密度持续上升;距离点火点越远,密度变化越大,反应釜中压力分布基本相同。研究结果可为甲烷-氢气-空气混合燃料的安全使用提供相关参考。  相似文献   

13.
为探索瓦斯爆炸过程中温度变化规律,基于球形爆炸实验,研究不同初始瓦斯浓度条件下爆炸温度及爆炸温度与爆炸压力之间的相互作用关系。结果表明:随初始瓦斯浓度升高,在6.5%(低浓度)、9.5%(当量浓度)、12%(高浓度)时出现爆炸温度极大值,分别为995,932,1 153 K;爆炸过程中温度延迟时间及升温时间与初始瓦斯浓度曲线均呈U型变化,当初始瓦斯浓度约为9.5%(当量浓度)时,温度延迟时间及升温时间变化较小;当初始瓦斯浓度在爆炸上限浓度(16%)和下限浓度(5%)附近时,受瓦斯浓度影响变化较大;初始瓦斯浓度在9.5%时,瓦斯爆炸过程中的压力波促进火焰燃烧波的反向传播,出现二次升温现象。研究结果可为完善瓦斯爆炸温度变化机理、提高灾害防控技术提供依据。  相似文献   

14.
为了解橡胶粉尘的爆炸危险性,采用20 L球爆炸测试装置对常温常压下、粒径75μm以下的橡胶粉尘在质量浓度50~700 g/m3范围内的爆炸特性进行试验研究,测定其最大爆炸压力及爆炸指数随质量浓度的变化规律,进而对其爆炸危险性程度进行分级。结果表明:橡胶粉尘质量浓度为300 g/m3时,爆炸压力达到最大值0.49MPa;在橡胶粉尘质量浓度为250 g/m3时,爆炸指数达到最大值5.04MPa·m/s,根据ISO 6184粉尘爆炸烈度等级分级标准,其粉尘爆炸危险性分级为St-1级。  相似文献   

15.
对甲烷-空气预混气体在球形容器和球形管道连通容器内的泄爆过程进行实验研究,根据实验结果得出在较小的泄压面积时,与密闭容器爆炸实验比较,不能降低容器内的最大压力,反而会增大容器内的最大压力。通过实验结果分析,泄爆口安装在远离点火源的位置,当发生预混气体爆炸时能较好地降低容器内的最大压力,起到保护容器的作用。  相似文献   

16.
天燃气安全不仅仅局限在企业内部,而是面向全社会,关系到社会稳定和市民生命财产安全。随着天然气市场开拓和广泛利用,庞大的管网系统和多样的用气环境给安全工作提出了更高的要求。采用理论分析、实验研究相结合的方法研究了管道内天然气爆炸火焰及压力波的传播规律。应用直径为700mm,长度为93m的管道进行了三次天然气爆炸传播实验。得出爆源点最大压力值并不是整个爆炸过程的最大值;压力波最大压力值在爆源点附近先降低,然后上升到某一峰值之后再逐渐衰减;最大压力值在衰减过程中不是单调衰减,有点起伏;随着天然气浓度的增大,其爆炸平均升压速率反而减小;随着天然气浓度的增大,其爆炸平均升压速率反而在减小;爆源附近火焰传播速度较小,上升到某一峰值后逐渐衰减。  相似文献   

17.
油气管道一旦发生泄漏失效容易引发爆炸等灾难性事故,而管路中的弯管段是容易发生失效的部分,弯管段承载能力的高低将影响整个管道系统的安全性。为了解决油气管线中弯管的失效问题,考虑几何和材料非线性,建立内压作用下含体积型缺陷弯管的有限元模型,并与爆破试验结果对比验证模型的有效性,确定管道的失效判定准则。研究表明影响弯管极限载荷的主要因素有缺陷的几何尺寸、相对位置以及弯曲半径。基于模拟计算,讨论各因素对含缺陷弯管极限载荷的影响规律,通过对计算结果进行非线性拟合,提出内压作用下含体积型缺陷弯管的极限内压预测公式。该公式将为含缺陷弯管的剩余强度评价和完整性评价提供一定依据。  相似文献   

18.
条形障碍物对瓦斯爆炸特性影响研究   总被引:3,自引:1,他引:2  
我国煤矿瓦斯爆炸事故不断出现,造成了巨大的人员伤亡和经济损失,在置障条件下研究瓦斯爆炸特性,对预防和减少瓦斯爆炸事故具有重要意义。利用水平管道式爆炸试验装置,研究密闭管道内条形障碍物的数量和阻塞率对管道内瓦斯最大爆炸压力、火焰速度、最大爆炸压力上升速率和爆炸指数的影响以及敞口状态的影响。研究表明:障碍物对瓦斯爆炸具有显著激励作用,管道内瓦斯最大爆炸压力、火焰速度、最大爆炸压力上升速率和爆炸指数均显著增大,随着障碍物数量和阻塞率的增加,激励作用越明显;敞口状态下管道内最大爆炸压力、最大爆炸压力上升速率和爆炸指数均显著减小,火焰持续传播。研究结果对防治煤矿瓦斯爆炸事故提供一定的理论支持。  相似文献   

19.
利用FLACS软件分析初始压力、初始温度对CH4/CO2/air混合气的爆炸温度、最大爆炸压力的影响;并与计算值对比。结果表明:①初始压力对爆炸温度、爆炸前后压力比影响可以忽略。常温变压条件下二氧化碳浓度增加,爆炸温度与爆炸前后压力比基本呈线性降低。常压变温条件较复杂,二氧化碳浓度升高爆炸温度降低;初始温度对低浓度(<15%)二氧化碳混合气爆炸温度几乎没有影响,而高浓度(>15%)二氧化碳混合气爆炸温度随初始温度增加而升高;最大爆炸压力随二氧化碳浓度以及温度升高而降低。②在设定条件下,低浓度(5%~10%)二氧化碳混合气爆炸温度计算值与模拟值相对误差小于5.5%,吻合较好;最大爆炸压力计算值与模拟值相对误差在6.5%~10.5%之间。  相似文献   

20.
杨春丽 《安全》2020,(2):48-54
N2和CO2是常用的惰性抑爆气体,为研究两种气体的抑爆特性,采用20L球形爆炸试验装置,分析了不同浓度配比条件下N2/CH4/空气以及CO2/CH4/空气混合气体的爆炸压力,同时采集爆炸后的气体样品,对比分析爆炸后残留气体的主要成分。结果显示:随CH4浓度从5%增加至12.5%时,完全抑制CH4爆炸需要的惰性气体最小量先增大后降低,CH4浓度在6.5%~7.5%之间时,抑爆需要的惰性气体的量最大;在同一CH4浓度条件下,抑爆需要N2的量大于CO2,并且CH4浓度在5%~6.5%时,抑爆需要两种惰性气体的量值差别最大;当CH4浓度一定时,随着加入惰性气体量的增大,爆炸最大超压逐渐降低,惰性气体浓度和爆炸超压之间基本呈线性关系;在同样条件下,相对于N2,CO2为抑爆气体时,爆炸后腔体内残留的CH4浓度较高。研究成果为惰性气体抑爆技术提供技术支撑,同时为揭示惰性气体抑爆机理有一定作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号