首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optical packet switching (OPS) is a promising technology to enable next-generation high-speed IP networks. A major issue in OPS is packet contention that occurs when two or more packets attempt to access the same output fiber. In such a case, packets may be dropped, leading to degraded overall switching performance. Several contention resolution techniques have been investigated in the literature including the use of fiber delay lines (FDLs), wavelength converters (WCs), and deflection routing. These solution typically induce extra complexity to the switch design. Accordingly, a key design objective for OPS is to reduce packet loss without increasing switching complexity and delay. In this paper, we investigate the performance of contention resolution in asynchronous OPS architectures with shared FDLs and WCs in terms of packet loss and average switching delay. In particular, an enhanced FDL-based and a novel Hybrid architecture with shared FLDs and WCs are proposed, and their packet scheduling algorithms are presented and evaluated. Extensive simulation studies show that the performance of proposed FDL-based architecture outperforms typical OPS architectures reported in the literature. In addition, it shown that, for the same packet loss ratio, the proposed hybrid architecture can achieve up to 30% reduction in the total number of ports and around 80% reduction in the overall length of fiber as compared to the FDL-based architectures.  相似文献   

2.
In all-optical packet switching, packets may arrive at an optical switch in an uncoordinated fashion. When contention occurs, fiber delay lines (FDLs) are needed to delay (buffer) the packets that have lost the contention to some future time slots for the desired output ports. There have been several optical-buffered switch architectures and FDL assignment algorithms proposed in the literature. However, most of them either have high implementation complexity or fail to schedule in advance departure time for the delayed packets. This paper studies the packet scheduling algorithms for the single-stage shared-FDL optical packet switch. Three new FDL assignment algorithms are proposed, namely sequential FDL assignment (SEFA), multicell FDL assignment (MUFA), and parallel iterative FDL assignment (PIFA) algorithms for the switch. The proposed algorithms can make FDLs and output-port reservation so as to schedule departure time for packets. Owing to FDL and/or output-port conflicts, the packets that fail to be scheduled are discarded before entering the switch so that they do not occupy any FDL resources. It is shown by simulation that with these algorithms, the optical-buffered switch can achieve a loss rate of /spl sim/10/sup -7/ even at the load of 0.9. These algorithms are extended to the three-stage Clos-Network optical packet switches in the companion paper.  相似文献   

3.
本文提出了一种共享波长转换器和光纤延迟线的全光分组交换结构,与传统的设计方法和实验报道相比,该结构提供了更灵活的冲突解决措施.为了获得与在交换系统输入级分别为每个波长信道提供波长转换器相等价的性能,本文给出了交换结构最多所需的转换器数量.仿真结果表明,本文结构是兼顾交换系统体积、成本和性能等三方面较理想的折衷方案.研究还表明,光纤数与每纤的波长数量之积愈大,本文结构所节约的转换器和延迟线数量将愈加可观.  相似文献   

4.
Buffers are essential components of any packet switch for resolving contentions among arriving packets. Currently, optical buffers are composed of fiber delay lines (FDL), whose blocking and delay behavior differ drastically from that of conventional RAM at least two-fold: 1) only multiples of discrete time delays can be offered to arriving packets; 2) a packet must be dropped if the maximum delay provided by optical buffer is not sufficient to avoid contention, this property is called balking. As a result, optical buffers only have finite time resolution, which may lead to excess load and prolong the packet delay. In this paper, a novel queueing model of optical buffer is proposed, and the closed-form expressions of blocking probability and mean delay are derived to explore the tradeoff between buffer performance and system parameters, such as the length of the optical buffer, the time granularity of FDLs, and to evaluate the overall impact of packet length distribution on the buffer performance.  相似文献   

5.
This letter presents a design proposal of optical packet switch architecture which incorporates fiber Bragg gratings (FBGs) and fiber delay line (FDL) to resolve contention among packets. The main feature of the architecture is the efficient use of FBG to create the buffer and there is no requirement of demux and splitter inside the buffer as in most of the conventional optical packet switch (OPS) architectures. Thus, the buffer is simplified in terms of required number of components used to create buffer. The FBG inside the buffer is a new approach towards buffering structure. Finally, comparative study of the proposed architecture with other architectures is presented.   相似文献   

6.
The major goal of optical packet switching (OPS) is to match switching technology to the huge capacities provided by (D)WDM. A crucial issue in packet switched networks is the avoidance of packet losses stemming from contention. In OPS, contention can be solved using a combination of exploitation of the wavelength domain (through wavelength conversion) and buffering. To provide optical buffering, fiber delay lines (FDLs) are used. In this paper, we focus on an optical packet switch with recirculating FDL buffers and wavelength converters. We introduce the Markovian arrival process with marked transitions (MMAP), which has very desirable properties as a traffic model for OPS performance assessment. Using this model, we determine lower and upper bounds for the packet loss rate (PLR) achieved by the aforementioned switch. The calculation of the PLR bounds through matrix analytical methods is repeated for a wide range of traffic conditions, including highly non-uniform traffic, both in space (i.e., packet destinations) and time (bursty traffic). The quality of these bounds is verified through comparison with simulation results.  相似文献   

7.
In this paper, a novel optical packet switch is proposed, which uses a set of shared fiber delay lines (FDLs) and a set of shared tunable wavelength converters (TWCs) to resolve optical packet contentions. In addition, two control algorithms, i.e., Fiber-First (FF) and Wavelength-First (WF), are proposed to schedule optical packets. Performance of the novel switch is evaluated by means of simulation experiments. Simulation results show that based on either of these two control algorithms, the switch can achieve super performance without employing a lot of FDLs and TWCs. Moreover, the performance of FF and WF is compared. Detail analyses are also given in this paper.  相似文献   

8.
Optical switching (optical packet switching, optical burst switching, and others) provides alternatives to the current switching in backbone networks. To switch optically, also packet buffering is to be done optically, by means of fiber delay lines (FDLs). Characteristic of the resulting optical buffer is the quantization of possible delays: Only delays equal to the length of one of the FDLs can be realized. An important design challenge is the optimization of the delay line lengths for minimal packet loss. To this end, we propose a heuristic based on two existing queueing models: one with quantization and one with impatience. Combined, these models yield an accurate performance modeling heuristic. A key advantage of this heuristic is that it translates the optical buffer problem into two well-known queueing problems, with accurate performance expressions available in the literature. This paper presents the heuristic in detail, together with several figures, comparing the heuristic’s output to existing approaches, validating its high accuracy.  相似文献   

9.
A major challenge in packet‐based optical networks is packet contention, which occurs when two or more packets are heading to the same output at the same time. To resolve contention in the optical domain, a fundamental approach is fiber delay‐line (FDL) buffering, in which packets can be delayed for a fixed amount of time. In the literature, the performance of FDL buffering has been studied extensively. However, most existing works are based on an assumption that there is only one fiber per link in the network. In this paper, we address the architecture and performance of FDL buffers in packet‐based asynchronous multifiber optical networks (PAMFONET), in which each link in the network may consist of multiple optical fibers. We propose a framework for FDL buffers in PAMFONET, in which we provide three essential architectures and corresponding packet scheduling policies. Extensive simulation results show that, with appropriate settings, the same number of FDLs can lead to better performance in multifiber networks than in single‐fiber networks. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
在光分组交换(0PS)节点结构中,由光纤延迟线(FDL)所构成的光缓存是解决光分组冲突的一种非常有效的方法。对于共享式FDL光缓存,由于FDL竞争的出现会导致光缓存性能的恶化。为了有效利用光缓存,需要对光缓存资源的分配进行有效的控制。为此,针对共事式FDL光缓存,提出一种有效的光缓存控制策略,即有限贪婪模式(limited greedy mode,LGM)缓存控制策略。使用仿真实验的方法对LGM的性能进行了评估。  相似文献   

11.
A new WDM packet switch architecture, partially shared buffering, is proposed. This architecture, in addition to dedicating an individual prime buffer for each output, incorporates a separate buffer for all the outputs to share. Based on this architecture, a lower packet loss probability can be achieved without the need of either dramatically increasing the size of each prime output buffer or deploying a large number of wavelength converters. The performance of the new architecture has been extensively studied by means of numerical simulations  相似文献   

12.
The fiber delay line (FDL) buffer is widely used in optical packet switching networks for contention solution. In this paper, a quantized delay buffer model is proposed to analyze the performance of the single-wavelength FDL buffer. Considering the delay quantization in the FDLs, the delay time and the waiting time of the packet are discussed. Without specific assumptions of the packet arrival process and length distribution, the model presents a generic approach to study the delay time distribution and modify the integral equation for the waiting time distribution. Analytic and exact results of the two aforementioned distributions can be obtained without any approximation. The accuracy of the model is validated through simulation.  相似文献   

13.
Modern switches and routers require massive storage space to buffer packets. This becomes more significant as link speed increases and switch size grows. From the memory technology perspective, while DRAM is a good choice to meet capacity requirement, the access time causes problems for high‐speed applications. On the other hand, though SRAM is faster, it is more costly and does not have high storage density. The SRAM/DRAM hybrid architecture provides a good solution to meet both capacity and speed requirements. From the switch design and network traffic perspective, to minimize packet loss, the buffering space allocated for each switch port is normally based on the worst‐case scenario, which is usually huge. However, under normal traffic load conditions, the buffer utilization for such configuration is very low. Therefore, we propose a reconfigurable buffer‐sharing scheme that can dynamically adjust the buffering space for each port according to the traffic patterns and buffer saturation status. The target is to achieve high performance and improve buffer utilization, while not posing much constraint on the buffer speed. In this paper, we study the performance of the proposed buffer‐sharing scheme by both a numerical model and extensive simulations under uniform and non‐uniform traffic conditions. We also present the architecture design and VLSI implementation of the proposed reconfigurable shared buffer using the 0.18 µm CMOS technology. Our results manifest that the proposed architecture can always achieve high performance and provide much flexibility for the high‐speed packet switches to adapt to various traffic patterns. Furthermore, it can be easily integrated into the functionality of port controllers of modern switches and routers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
An analytical model is derived to evaluate the performance of an optical switch using a feed-forward fiber delay line (FDL) per output for contention resolution. Two different forwarding algorithms for the switch are presented and evaluated: a simple forwarding algorithm (SFA) that is easier to implement, and an enhanced algorithm that provides better performance in terms of both packet loss probability and packet delay. The analytical model can be utilized with both packet and burst switching schemes to characterize the performance of the proposed architecture. Results show that the proposed architecture reduces the packet loss probability compared to that without FDLs. Finally, the same architecture is shown to be capable of supporting Quality of Service (QOS).
Anura Jayasumana (Corresponding author)Email:
  相似文献   

15.
This paper considers the performance of an all-optical packet-switched cross-connect. All-optical header processing and all-optical routing are implemented in the cross-connect architectures. The main metric considered to measure the performance is the packet loss ratio for the buffering. This is influenced primarily by three factors. The first is the cross-connect architecture: feedback or feed-forward buffering, incorporating wavelength domain contention resolution. The second is the selection of the fibre delay line distribution: degenerate or non-degenerate distributions. And the third is the traffic load together with the traffic model used for the performance analysis: a Poisson distribution or a self-similar model. It is shown that the optimal implementation of a feedback buffer requires a technique such as overflow buffering as well as the superior performance of an all-optical switch in order to maintain signal quality through multiple recirculations.  相似文献   

16.
该文研究了光分组网络的冲突处理问题,提出了两种异于传统设计方法的交换结构。研究表明:对于非突发性业务,非简并排列方式的光纤延迟线是成本最低的解决手段;而对于突发业务,将波长转换器和延迟线结合使用是兼顾分组丢弃性能,系统体积和成本的较好策略,文中基于此给出了系统设计原则,该原则可确保系统节约大量的波长转换器和延迟线,对改善系统的整体性能十分有利。  相似文献   

17.
提出了一种基于业务负载选择的光分组交换(OPS)网络的光缓存结构,根据业务负载大小灵活选择缓存方式。输出缓存光纤延迟线(FDL)采用分段式共享机制配置,输出/反馈共享缓存模块采用简并式配置,以提高有限数目FDL的利用率。分析和仿真表明,这种可选择的缓存结构可以有效降低丢包率和OPS节点需求的FDL数目。  相似文献   

18.
In all-optical packet switching, packets may arrive at an optical switch in an uncoordinated fashion. To prevent packet loss in the switch, fiber delay lines (FDLs) are used as optical buffers to store optical packets. However, assigning FDLs to the arrival packets to achieve high throughput, low delay, and low loss rate is not a trivial task. In the authors' companion paper, several efficient scheduling algorithms were proposed for single-stage shared-FDL optical packet switches (OPSs). To further enhance the switch's scalability, this work was extended to a multistage case. In this paper, two scheduling algorithms are proposed: 1) sequential FDL assignment and 2) multicell FDL assignment algorithms for a three-stage optical Clos-Network switch (OCNS). The paper shows by simulation that a three-stage OCNS with these FDL assignment algorithms can achieve satisfactory performance.  相似文献   

19.
一种新型的输出缓存式光分组交换节点性能分析   总被引:1,自引:0,他引:1  
光缓存和波长变换是解决光分组竞争的有效方法.提出一种称为FCOB的新型光分组交换节点结构,它使用固定波长变换器和输出式光缓存来解决光分组的竞争.针对FCOB交换结构,还提出一种有效的竞争控制算法.最后,使用仿真实验对FCOB的性能进行了评估.仿真结果表明,虽然使用的是固定波长变换器,但FCOB交换结构仍具有良好的性能.  相似文献   

20.
This paper investigates the untraditional approach of contention resolution in Wavelength Division Multiplexing (WDM) Optical Packet Switching (OPS). The most striking characteristics of the developed switch architecture are: (1) Contention resolution is achieved by a combined sharing of Fiber Delay-Lines (FDLs) and Tunable Optical Wavelength Converters (TOWCs); (2) FDLs are arranged in non-degenerate form, i.e., non-uniform distribution of the delay lines; (3) TOWCs just can perform wavelength conversion in partial continuous wavelength channels, i.e., sparse wavelength conversion. The concrete configurations of FDLs and TOWCs are described and analyzed under non-bursty and bursty traffic scenarios. Simulation results demonstrate that for a prefixed packet loss probability constraint, e.g., 10-6, the developed architecture provides a different point of view in OPS design. That is, combined sharing of FDLs and TOWCs can, effectively, obtain a good tradeoff between the switch size and the cost, and TOWCs which are achieved in sparse form can also decrease the implementing complexity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号