首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 338 毫秒
1.
在5G移动边缘计算(MEC)的车联网场景中, 针对车辆任务卸载目标的选择问题, 设计了一种基于任务优先级的服务器选择方案. 综合考虑时间、能耗、成本等因素对卸载位置选择的影响, 提出了基于多重指标拍卖博弈的解决方法. 通过多重指标拍卖机制, 选择最优的MEC服务器为车辆提供任务卸载服务, 实现车辆与RSU协作的贝叶斯纳什均衡. 仿真结果表明, 该方案能在保障车辆任务卸载时间和能耗的约束条件下, 降低任务卸载的总费用, 满足多个性能指标.  相似文献   

2.
针对车联网场景下的边缘计算系统中MEC服务器负载不均衡,紧急任务无法得到优先处理的问题,提出一种基于麻雀搜索算法的计算卸载策略(COSSA)。以最小化VEC系统的任务计算时延和MEC资源服务费为目标建立数学模型,利用层次分析法根据任务的属性为每个需要卸载任务分配优先级,运用麻雀搜索算法根据目标函数找出最优的卸载决策,实现服务器负载均衡。实验结果表明,与Random、ALP和OMP策略相比,COSSA策略可以有效地降低系统开销、均衡MEC服务器负载。  相似文献   

3.
车载边缘计算(Vehicular Edge Computing,VEC)是一种可实现车联网低时延和高可靠性的关键技术,用户将计算任务卸载到移动边缘计算(Mobile Edge Computing,MEC)服务器上,不仅可以解决车载终端计算能力不足的问题,而且可以减少能耗,降低车联网通信服务的时延。然而,高速公路场景下车辆移动性与边缘服务器静态部署的矛盾给计算卸载的可靠性带来了挑战。针对高速公路环境的特点,研究了临近车辆提供计算服务的可能性。通过联合MEC服务器和车辆的计算资源,设计并实现了一个基于深度强化学习的协同计算卸载方案,以实现在满足任务时延约束的前提下最小化所有任务时延的目标。仿真实验结果表明,相比于没有车辆协同的方案,所提方案可以有效降低时延和计算卸载失败率。  相似文献   

4.
由于车辆自身的高速移动性和资源有限性等特征,使得采用传统通信和计算手段的车联网场景无法满足用户日益增长的数据计算需求和体验质量需求。采用5G和边缘计算技术构建的新型车联网架构可以满足以上需求,但由于网络结构的变化,需设计适合新场景下的车辆任务通信和计算策略。针对5G车联网场景下的移动车辆任务动态卸载问题进行研究,提出了对应的动态任务分配策略和卸载调度低时延算法。车辆会根据提出的策略和算法将未完成的计算任务卸载到相应的 MEC 服务器或车辆上,并且计算结果将通过边缘服务器之间的联合通信或直接从被选择接受卸载任务的附近空闲车辆上直接返回给车主。仿真结果表明,所提出的策略和算法在优化卸载延迟方面具有良好的性能,并提高了用户体验质量。  相似文献   

5.
在车载边缘计算(Vehicular Edge Computing,VEC)网络中,车辆计算资源受限导致无法处理海量的计算任务,需要将车载应用产生的计算任务卸载到VEC服务器上进行处理。但车辆的移动性和区域部署的差异性易导致VEC服务器负载不均衡,造成了计算卸载效率和资源利用率降低。为解决该问题,提出一种计算卸载和资源分配方案,以使用户效用最大化。将用户效用最大化问题转化成服务器选择决策和卸载比例与计算资源分配联合优化两个子问题,在此基础上设计基于匹配的服务器选择决策算法和基于Adam梯度优化法的计算任务卸载比例与资源分配联合优化算法,并对上述两种算法进行联合迭代,直至收敛,从而得到近似最优解以达到负载均衡。仿真结果表明,相比最近卸载方案和预测卸载方案,该方案能有效降低计算任务处理时延和车辆能耗,增大车辆效用,促进负载均衡。  相似文献   

6.
移动边缘计算(MEC)使智能终端能够将部分计算负载转移到位于基站子系统的边缘服务器上,以解决物联网络大量数据处理问题。通过研究非正交多址(NOMA)的多址MEC,提出了一种终端-边缘服务器资源分配方案,通过NOMA方式传输,智能终端可以将计算工作负载卸载到不同的边缘服务器,从而减少完成智能终端的计算工作负载的总延迟。该方案目标是优化资源成本最小,该系统成本考虑终端卸载的计算工作量和边缘服务器的计算资源使用成本的总延迟。通过单个终端的最优卸载解决方案数值结果验证了方案的有效性。  相似文献   

7.
针对车联网(IoV)中存在大量的车辆卸载任务计算需求,而本地端边缘服务器运算能力有限的问题,提出一种移动边缘计算分层协同资源配置机制(HRAM)。所提算法以多层式的架构合理分配与有效利用移动边缘计算(MEC)服务器的运算资源,减少不同MEC服务器之间的数据多跳转发时延,并优化卸载任务请求时延。首先构建IoV边缘计算系统模型、通信模型、决策模型和计算模型;然后利用层次分析法(AHP)进行多因素综合考虑以确定卸载任务迁移的目标服务器;最后提出动态权值的任务路由策略,调用整体网络的通信能力以缩短卸载任务的请求时延。仿真实验结果表明,HRAM算法相较于任务卸载单层式资源分配(RATAOS)算法和任务卸载多层式资源分配(RATOM)算法,分别降低了40.16%和19.01%的卸载任务请求时延;且所提算法在满足卸载任务最大可容忍时延的前提下,能够满足更多卸载任务的计算需求。  相似文献   

8.
罗斌  于波 《计算机应用》2020,40(8):2293-2298
计算卸载作为移动边缘计算(MEC)中降低时延与能耗的手段之一,通过合理的卸载决策能够降低工业成本。针对工业生产线中部署MEC服务器后时延变长和能耗增高的问题,提出了一种基于粒子群优化(PSO)算法的计算卸载策略PSAO。首先,将实际问题建模为时延模型与能耗模型。由于是针对时延敏感型的应用,因此将模型转化为在能耗约束条件下的最小化时延问题,使用惩罚函数来平衡时延与能耗。其次,根据PSO算法优化后得到计算卸载决策向量,通过集中控制的方式使每一个计算任务合理分配到对应的MEC服务器。最后,通过仿真实验,对比分析了本地卸载策略、MEC基准卸载策略、基于人工鱼群算法(AFSA)的卸载策略以及PSAO的时延数据,PSAO的平均总时延远远低于其他三种卸载策略,PSAO比原来系统总代价降低了20%。实验结果表明,PSAO策略能够降低MEC中的时延,均衡MEC服务器的负载。  相似文献   

9.
移动边缘计算(Mobile Edge Computing,MEC)中的计算卸载技术通过将终端设备的计算任务卸载到网络边缘处,以解决云计算中心时延长、能耗大和负载高等问题。介绍了MEC的概念、目前主流的MEC网络架构和部署方案。从卸载决策方面对MEC环境下计算密集型应用的卸载技术进行了详细研究,从最小化时延、最小化能耗、权衡时延和能耗及最大化收益为优化目标的4种计算卸载方案进行了分析和对比,并总结出各自的关键研究点。通过分析5G环境下MEC卸载技术的发展趋势,介绍了支持5G的IIoT-MEC网络部署架构,在此基础上分析了基于深度强化学习的轻量级任务卸载策略和基于D2D协作的MEC卸载策略。总结和归纳了目前MEC中计算卸载技术所面临的卸载决策、干扰管理、移动性管理等方面的核心挑战。  相似文献   

10.
张珂  张利国 《自动化学报》2022,48(7):1737-1746
针对车联网环境下路侧边缘计算节点部署不均衡、服务密度小、实时调度计算压力大等问题,提出一种基于智能车移动边缘计算(Mobile edge computing,MEC)的任务排队建模与调度算法,提供弹性计算服务,将具备感知、计算、控制功能的智能车作为移动边缘计算服务器,设计了车联网环境下的MEC体系架构.首先基于虚拟化技术对智能车进行虚拟化抽象,利用排队论对虚拟车任务构建了GI/GI/1排队模型.然后基于云平台Voronoi分配算法对虚拟车任务进行分配绑定,进而实现了智能车的优化调度与分布式弹性服务,解决了边缘计算任务分配不均衡等问题.最后通过城市交通路网中的车辆污染排放的实时计算实验,验证了该方法的有效性.  相似文献   

11.
邸剑  薛林  蔡震 《计算机应用研究》2021,38(4):1145-1148,1157
提出了一种基于网联车多跳传输的移动边缘计算卸载策略,通过对车辆未来行驶轨迹的预测,有效发现车辆网络实时最佳多跳传输路径,以保证在时延要求内成功将计算任务卸载至MEC服务器。仿真实验结果表明,较传统的移动卸载策略,平均任务时延更低,任务成功率更高,各方面性能均优于传统的边缘计算卸载策略。其中,任务卸载成功率平均提升了10.06%,任务时延平均降低了8.62%。  相似文献   

12.
针对海洋通信网络能源不稳定、时延较长的问题,提出一种混合能量供应的边缘计算卸载方案。对于能量供应问题,移动边缘计算(MEC)服务器集成混合电源和混合接入点,混合电源利用可再生能源为MEC服务器供应能量,采用电力电网作为其补充能源,保证边缘计算系统的可靠运行,船舶用户通过混合接入点广播的射频(RF)信号收集能量。针对任务卸载优化问题,以能耗-时延权衡优化为目标,联合能量收集方法制定任务卸载比例、本地计算能力和发射功率的优化方案,最后利用降维优化算法,将目标函数简化为关于任务卸载比例的一维多约束问题,并利用改进的鲸鱼优化算法获得最优的执行总代价。利用边缘云模拟器EdgeCloudSim仿真的结果表明,所提方案较具有能量收集的资源分配方案和基本海上通信网络优化的方案执行成本分别降低了13.4%和9.6%。  相似文献   

13.
移动边缘计算(MEC)为计算密集型应用和资源受限的移动设备之间的冲突提供了有效解决办法,但大多关于MEC迁移的研究仅考虑移动设备与MEC服务器之间的资源分配,忽略了云计算中心的巨大计算资源。为了充分利用云和MEC资源,提出一种云边协作的任务迁移策略。首先,将云边服务器的任务迁移问题转化为博弈问题;然后,证明该博弈中纳什均衡(NE)的存在以及唯一性,并获得博弈问题的解决方案;最后,提出了一种基于博弈论的两阶段任务迁移算法来求解任务迁移问题,并通过性能指标对该算法的性能进行了评估。仿真结果表明,采用所提算法所产生的总开销分别比本地执行、云中心服务器执行和MEC服务器执行的总开销降低了72.8%、47.9%和2.65%,数值结果证实了所提策略可以实现更高的能源效率和更低的任务迁移开销,并且随着移动设备数量的增加可以很好地扩展规模。  相似文献   

14.
Mobile edge computing (MEC) is a promising technology for the Internet of Vehicles, especially in terms of application offloading and resource allocation. Most existing offloading schemes are sub-optimal, since these offloading strategies consider an application as a whole. In comparison, in this paper we propose an application-centric framework and build a finer-grained offloading scheme based on application partitioning. In our framework, each application is modelled as a directed acyclic graph, where each node represents a subtask and each edge represents the data flow dependency between a pair of subtasks. Both vehicles and MEC server within the communication range can be used as candidate offloading nodes. Then, the offloading involves assigning these computing nodes to subtasks. In addition, the proposed offloading scheme deal with the delay constraint of each subtask. The experimental evaluation show that, compared to existing non-partitioning offloading schemes, this proposed one effectively improves the performance of the application in terms of execution time and throughput.  相似文献   

15.
无人机搭载深度神经网络进行自主电力巡检时由于受到设备本身计算能力、电池容量、深度神经网络计算负载的限制,无法独立处理巡检任务中产生的海量图像数据。为解决该问题,提出了一种基于改进混合粒子群算法和匹配理论的无人机电力巡检卸载策略,该策略将系统成本最小化问题分解为深度神经网络计算任务协同分割和边缘服务器选择两个子问题。针对协同分割子问题,基于深度神经网络计算任务的执行流程提出了一种错时传输方法,通过改进混合粒子群算法求解多无人机任务协同分割层。针对边缘服务器选择子问题,定义无人机与边缘服务器各自偏好函数,根据偏好函数通过匹配理论建立两者间的稳定匹配,得到边缘服务器选择策略。仿真结果表明,与其他卸载策略相比,所提策略能有效降低无人机能耗和计算任务处理时延,促进边缘服务器负载均衡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号