首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
用粉末冶金工艺结合SPS烧结制备了n型Bi2(Te0.975Se0.025)3和p型(Bi0.2Sb0.8)2Te3多晶半导体合金,并通过XRD衍射分析和SEM观察等方法研究其在不同方向上的微观结构,测试了其热电性能。结果表明试样的电导率随烧结温度的增加而减小,试样内部的晶粒具有明显的取向,材料的电学性能也同样具有各向异性的性质。  相似文献   

2.
采用真空熔炼、机械球磨及放电等离子烧结技术(SPS)制备得到了(Ag2Te)x(Bi0.5Sb1.5Te3)1-x(x=0,0.025,0.05,0.1)系列样品,性能测试表明,Ag2Te的掺入可以显著改变材料的热电性能变化趋势,掺杂样品在温度为450~550K范围内具有较未掺杂样品更优的热电性能.适当量的Ag2Te掺入能够有效地提高材料的声子散射,降低材料的热导率.在测试温度范围内,(Ag2Te)0.05(Bi0.5Sb1.5Te3)0.95具有最低的晶格热导,室温至575K范围内保持在0.2~0.3W/(m·K)之间,在575K时,(Ag2Te)0.05(Bi0.5Sb1.5Te3)0.95试样具有最大热电优值ZT=0.84,相较于未掺杂样品提高了约20%.  相似文献   

3.
采用真空熔炼和热压烧结技术制备了K和Al共掺杂Bi2Te2.7Se0.3热电材料。利用X射线衍射(XRD)、扫描电子显微镜(SEM)对样品的物相结构和表面形貌进行了表征。XRD分析结果表明,K0.04Bi1.96-x Al x Te2.7Se0.3块体材料的XRD图谱与Bi2Te2.7Se0.3的XRD图谱对应一致,SEM形貌表明材料组织致密且有层状结构特征。K0.04Bi1.92-Al0.04Te2.7Se0.3合金提高了材料的Seebeck系数,K0.04Bi1.88Al0.08Te2.7Se0.3和K0.04Bi1.84Al0.12Te2.7Se0.3大幅度提高了材料的电导率,通过K和Al部分替代Bi,使材料的热导率有不同程度的减小,在300~500 K温度范围内,K和Al共掺杂均较大幅度地提高了Bi2Te2.7Se0.3的热电优值。  相似文献   

4.
用机械球磨-热压法制备了Bi0.5Sb1.5Te3热电材料,分别研究了机械球磨时间对合成Bi0.5Sb1.5Te3合金相的影响和烧结温度对其热电性能的影响.结果表明Bi、Sb、、Te原始混合粉末高能球磨10 h以后,就可以完全合金化,生成Bi0.5Sb1.5Te3相.球磨10h的粉末分别在400、450和520℃下热压烧结成型,烧结样品的密度随烧结温度的增大而增加,Seebeck系数和电阻率随烧结温度的升高而降低  相似文献   

5.
采用固相反应法制备出NaxCo2O4(x=0.9,1.1,1.3)多晶氧化物,采用水热法制备出(Bi0.1Sb0.9)2Te3单相粉末材料,再用球磨法将二者均匀混合获得了复合材料(Bi0.1Sb0.9)2Te3/NaxCo2O4。在5~300K的温度范围内,利用综合物性测试系统(PPMS)对热压复合材料的热电性能进行测量与评价。实验结果表明复合材料的热导率显著降低,同时电导率增大,与NaxCo2O4相比,复合材料的热电性能获得了显著提高。在室温下,复合材料的热电优值ZT约为3.5×10-4。热电性能的改善源于复合材料界面的声子散射的增强。  相似文献   

6.
采用真空熔炼及热压方法制备了K和Al共掺杂P型Bi0.5Sb1.5Te3热电材料。XRD分析结果表明,K0.04Bi0.5Sb1.5-x Alx Te3块体材料的XRD图谱与Bi0.5Sb1.5Te3的图谱完全对应,SEM形貌分析表明材料具有一定的层状结构和微孔。K和Al共掺杂提高了Bi0.5Sb1.5Te3在室温附近的Seebeck系数。除了K0.04Bi0.5Sb1.34Al0.12Te3样品的300K和400K以上的高温区,以及共掺杂样品的500K高温附近之外,K和Al共掺杂均使Bi0.5Sb1.5Te3材料的电导率降低。在300~500K温度范围内,K0.04Bi0.5Sb1.42Al0.04Te3样品的热导率均小于Bi0.5Sb1.5Te3的热导率。在300~350K温度范围内,K0.04Bi0.5Sb1.42Al0.04Te3样品的热电优值较Bi0.5Sb1.5Te3有较大幅度的提高。  相似文献   

7.
以SbCl3和Se粉为原料,水合肼(N2H4·H2O)为还原剂,采用水热法在150℃下,分别保温不同的时间合成Sb2Se3纳米粉末.通过X射线衍射(XRD)、场发射电子扫描电镜(FESEM)、透射电镜(TEM)以及高分辨透射电镜(HRTEM)等分析方法对产物的物相成分和微观形貌等进行了表征,实验结果表明保温时间达到24h时,获得产物为单相Sb2Se3纳米线晶体.根据实验结果还研究了水热合成Sb2Se3纳米线晶体可能的反应及生长机理,结果表明一维纳米线沿[001]方向生长,纳米线的形成与其独特的层状晶体结构有关.最后采用放电等离子体快速热压烧结法将水热合成的Bi2Te3纳米粉末与不同含量Sb2Se3纳米线进行复合,分析了Sb2Se3纳米线对Bi2Te3纳米材料热电性能的影响,发现复合约1at%Sb2Se3纳米线可以使Bi2Te3纳米材料热电性能有一定提高.  相似文献   

8.
阐述了Bi2Te3热电材料的基本特性,评述了Se,TeL,SiC,RE(La,Ce等)的掺杂对BiTe材料热电性能的影响,以及国内外掺杂Bi-Te基热电材料的研究进展.介绍了Bi-Te基合金的制备技术的发展.最后指出通过材料的结构优化、组分调整及制备技术的改进,可以进一步提高材料的热电性能,得到理想的热电优值.  相似文献   

9.
通过快淬-机械球磨-放电等离子烧结工艺制备了p型(Bi0.25Sb0.75)2Te3块体热电材料.在300~523K温度范围内对其电导率、Seebeck系数和热导率进行了测试,并系统研究了快淬后球磨时间对合金热电性能的影响.研究结果表明,随着球磨时间的延长,样品的电导率呈先降后升的趋势,Seebeck系数变化并不明显,而热导率随球磨时间的延长逐渐下降.球磨20h的样品在室温下具有最高的热电优值,最大值达到0.96,机械抗弯强度达到91MPa.  相似文献   

10.
采用真空熔炼及热压烧结方法制备了Na和Ga共掺杂n型Bi2Te2.7Se0.3热电材料。XRD结果表明,Na0.04Bi1.96-xGaxTe2.7Se0.3块体材料的XRD图谱与Bi2Te2.7Se0.3的图谱对应一致。通过EDAX技术对Na0.04Bi1.96-xGaxTe2.7Se0.3块体材料的成分进行了分析,无氧化现象。在298~523K温度范围内,在垂直于热压方向对样品的电热输运性能进行了测试分析,结果表明Na和Ga共掺杂可以有效地提高Bi2Te2.7Se0.3的载流子浓度,从而使电导率得到明显改善,但同时Seebeck系数有不同程度的损失。由于晶格热导率减小,Na掺杂及共掺杂样品Na0.04Bi1.96-xGaxTe2.7Se0.3(x=0.04)均使热导率降低。当Na掺杂浓度为0.04时,随着Ga掺杂浓度的增加,热导率呈现递增的现象,Na和Ga共掺杂样品Na0.04Bi1.96-xGaxTe2.7Se0.3(x=0.04)的热电优值获得了较明显的提高,在398K时的最大ZT值为0.75。  相似文献   

11.
Bi2Te3基热电材料由于在微电子、光电子等高技术领域具有潜在的应用前景,从而得到了人们的广泛关注.低维Bi2Te3基热电材料由于具有特殊的量子限制效应,已成为提高热电性能的有效途径.近年来,研究者非常重视Bi2Te3基热电薄膜的制备及性能研究,并做了大量相关的研究工作,许多制备方法也相继出现,并获得了高质量的Bi2Te3基热电薄膜.  相似文献   

12.
热电材料因自身的优点而受到人们的广泛重视,但热电性能普遍不高成为制约其进一步应用的关键.随着热电理论和纳米技术的不断发展,纳米热电材料的研究成为近年来热电领域的一大热点.在分析介绍国内外湿化学方法制备纳米Bi2Te3系热电材料研究现状的基础上,指出了各种方法的优缺点,并展望了纳米热电材料的制备及其应用发展趋势.  相似文献   

13.
热电材料是能将热能和电能直接相互转化的功能材料,它的出现为解决能源紧缺和环境污染提供了广阔的应用前景.从理论和实验两个方面对Bi2Te3基热电材料近年来国内外的研究现状及发展进行了简要介绍和评述,并指出了今后的发展方向.在理论上主要基于能带理论、半导体超晶格以及密度泛函理论去寻求影响该材料的相关因子,在实验上主要采用分子束外延、激光脉冲沉积、合金化和水热合成法等方法制备该热电材料.  相似文献   

14.
电化学制备Bi2Te3纳米线用于微型温差发电器   总被引:1,自引:0,他引:1  
借助于电化学沉积的方法,在氧化铝纳米孔内生长Bi2Te3材料,从而形成温差电纳米线阵列.利用SEM,XRD and TEM分析手段对制备的纳米线形貌和结构进行了分析,测量了纳米线的组成和温差电性能.p型和n型Bi2Te3纳米线材料的Seebeck系数经过测量分别为260μV/K和-188μV/K(307K),比同类的块状温差电材料性能高.同时研究了沉积电位对氧化铝模板中纳米孔的填充率的影响,并对纳米线阵列的电阻进行了测量.尝试了利用n型和P型Bi2Te3纳米线阵列制备一种新型的微型温差发电器.  相似文献   

15.
采用水热法制备Bi2Te3/Sb2Te3纳米粉体并热压制备块体热电材料.用X射线衍射分析产物的相结构和成分,扫描显微镜与透射电镜观察产物的形貌.测量试样从室温到700K的塞贝克系数与电导率.实验结果表明,使用水热法制备了Bi2Te3与Sb2Te3纳米粉体,经热压后部分氧化.热压温度对于块体试样热电性能影响显著.  相似文献   

16.
超声波-水热法合成Bi2Te3纳米管   总被引:1,自引:0,他引:1  
以水为反应介质,NaBH4为还原剂,合成了BizTe3纳米管及纳米微粒。溶液首先在超声波发生器中预处理1h,然后置于150℃,水热反应釜中继续反应48h。XRD分析表明:合成产物主要物相为Bi2Te3;SEM观察可见产物中有纳米管生成,纳米管直径约为50-100nm,管壁厚约8-10nm,长度在500nm以上。EDS分析表明:纳米管成份为Bi2Te3。Bi2Te3纳米管可能的生长机制为纳米薄片-卷曲-闭合-纳米管。  相似文献   

17.
倪华良  朱铁军  赵新兵 《功能材料》2006,37(10):1561-1563
用水热法在473K下反应24h,制备了Bi-Te-Se三元合金.其粉末产物由结构相同成份接近的两相Bi-Te-Se合金组成.粉末在523K,50MPa压力下热压成的块材也是两相结构.粉末和块体材料的微观形貌均由层片状颗粒组成,层片厚度为100nm左右.通过改变Te的相对含量,可以调节施主掺杂浓度.材料具有很低的热导率,在349K时试样Bi2Te2.85Se0.45具有晶格热导率最低值为0.33W/m·K.此时,它也具有最高的ZT值为0.60.  相似文献   

18.
采用二次电化学沉积法制备了聚苯胺-碲化铋复合纳米棒.首先在多孔氧化铝模板上电化学沉积聚苯胺纳米管,以导电聚苯胺纳米管作为二级模板,继续电化学沉积碲化铋,获得聚苯胺包裹碲化铋纳米棒.EPMA分析了碲化铋的化学成分,SEM、TEM图像表明直径约100nm的碲化铋棒被厚约50nm的聚苯胺包裹,XRD图谱表明碲化铋在纳米棒垂直方向存在明显的{110}的织构.二次电化学沉积法为制备该类特殊有机-无机杂化结构材料提供了新方法.  相似文献   

19.
采用简单的水热/溶荆热法合成了纳米结构的Bi0.5Sb1.5Te3晶粒,通过改变溶剂种类和表面修饰剂的添加量可以实现对Bi0.5Sb1.5Te3纳米晶体的尺寸和形貌的控制.当表面修饰剂的浓度较小时,合成的Bi0.5-Sb1.5Te3晶粒只有数十纳米,有望为高性能的纳米结构块体热电材料提供原始粉末.产物的颗粒尺寸减小和片状形貌的获得,可能是生成物的合成速率减缓和表面修饰剂选择性吸附所致.  相似文献   

20.
Bismuth telluride is known to wield unique properties for a wide range of device applications. However, as devices migrate to the nanometer scale, significant amount of studies are being conducted to keep up with the rapidly growing nanotechnological field. Bi2Te3 possesses distinctive properties at the nanometer level from its bulk material. Therefore, varying synthesis and characterization techniques are being employed for the realization of various Bi2Te3 nanostructures in the past years. A considerable number of these works have aimed at improving the thermoelectric (TE) figure-of-merit (ZT) of the Bi2Te3 nanostructures and drawing from their topological insulating properties. This paper reviews the various Bi2Te3 and Bi2Te3-based nanostructures realized via theoretical and experimental procedures. The study probes the preparation techniques, TE properties and the topological insulating effects of 0D, 1D, 2D and Bi2Te3 nanocomposites. With several applications as a topological insulator (TI), the topological insulating effect of the Bi2Te3 is reviewed in detail with the time reversal symmetry (TRS) and surface state spins which characterize TIs. Schematics and preparation methods for the various nanostructural dimensions are accordingly categorized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号