首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Pikes Peak Highway is a partially paved road between Cascade, Colorado and the summit of Pikes Peak. Significant gully erosion is occurring on the hillslopes due to the concentration of surface runoff, the rearrangement of drainage pathways along the road surface and adjacent drainage ditches, and the high erodibility of weathered Pikes Peak granite that underlies the area. As a result, large quantities of sediment are transported to surrounding valley networks causing significant damage to water quality and aquatic, wetland, and riparian ecosystems. This study establishes the slope/drainage area threshold for gullying along Pikes Peak Highway and a cesium‐137 based sediment budget highlighting rates of gully erosion and subsequent valley deposition for a small headwater basin. The threshold for gullying along the road is Scr = 0 · 21A–0·45 and the road surface reduces the critical slope requirement for gullying compared to natural drainages in the area. Total gully volume for the 20 gullies along the road is estimated at 5974 m3, with an erosion rate of 64 m3 yr–1 to 101 m3 yr–1. Net valley deposition is estimated at 162 m3 yr–1 with 120 m3 yr–1 unaccounted for by gullying. The hillslope–channel interface is decoupled with minimal downstream sediment transport which results in significant local gully‐derived sedimentation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Although obvious in the field, the impact of road building on hydrology and gullying in Ethiopia has rarely been analysed. This study investigates how road building in the Ethiopian Highlands affects the gully erosion risk. The road between Makalle and Adwa in the highlands of Tigray (northern Ethiopia), built in 1993–1994, caused gullying at most of the culverts and other road drains. While damage by runoff to the road itself remains limited, off‐site effects are very important. Since the building of the road, nine new gullies were created immediately downslope of the studied road segment (6·5 km long) and seven other gullies at a distance between 100 and 500 m more downslope. The road induces a concentration of surface runoff, a diversion of concentrated runoff to other catchments, and an increase in catchment size, which are the main causes for gully development after road building. Topographic thresholds for gully formation are determined in terms of slope gradient of the soil surface at the gully head and catchment area. The influence of road building on both the variation of these thresholds and the modification of the drainage pattern is analysed. The slope gradient of the soil surface at the gully heads which were induced by the road varies between 0·06 and 0·42 m m?1 (average 0·15 m m?1), whereas gully heads without influence of the road have slope gradients between 0·09 and 0·52 m m?1 (average 0·25 m m?1). Road building disturbed the equilibrium in the study area but the lowering of topographic threshold values for gullying is not statistically significant. Increased gully erosion after road building has caused the loss of fertile soil and crop yield, a decrease of land holding size, and the creation of obstacles for tillage operations. Hence roads should be designed in a way that keeps runoff interception, concentration and deviation minimal. Techniques must be used to spread concentrated runoff in space and time and to increase its infiltration instead of directing it straight onto unprotected slopes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
Gullying has been widespread in the Ethiopian Highlands during the 20th century. It threatens the soil resource, lowers crop yields in intergully areas through enhanced drainage and desiccation, and aggravates flooding and reservoir siltation. Knowing the age and rates of gully development during the last few decades will help explain the reasons for current land degradation. In the absence of historical written or photographic documentation, the AGERTIM method (Assessment of Gully Erosion Rates Through Interviews and Measurements) has been developed. It comprises measurements of contemporary gully volumes, monitoring of gully evolution over several years and semi‐structured interview techniques. Gully erosion rates in the Dogu'a Tembien District, Tigray, Ethiopia, were estimated in three representative case‐study areas. In Dingilet, gullying started around 1965 after gradual environmental changes (removal of vegetation from cropland in the catchment and eucalyptus plantation in the valley bottom); rill‐like incisions grew into a gully, which increased rapidly in the drier period between 1977 and 1990. The estimated evolution of the total gully volume in the other areas show patterns similar to those of the Dingilet gully. Average gully erosion rate over the last 50 years is 6·2 t ha?1 a?1. Since 1995, no new gullies have developed in the study area. Area‐specific short‐term gully erosion rates are now on average 1·1 t ha?1 a?1. The successful application of the AGERTIM method requires an understanding of the geomorphology of the study area and an integration of the researchers with the rural society. It reveals that rapid gully development in the study area is some 50 years old and is mainly caused by human‐induced environmental degradation. Under the present‐day conditions of ‘normal’ rain and catchment‐wide soil and water conservation, gully erosion rates are decreasing. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Gully erosion is an environmental problem recognized as one of the worst land degradation processes worldwide. Insight into regional gully perturbations is required to combat the serious on- and off-site impacts of gullying on a catchment management scale. In response, we intersect different perspectives on gully erosion-specific views in South Africa (SA), a country that exhibits various physiographic properties and spans 1.22 million km2. While the debate surrounding gully origin continues, there is consensus that anthropogenic activities are a major contemporary driver. The anthropogenic impact caused gullying to transcend climatic, geomorphic, and land-use boundaries, although it becomes more prominent in central to eastern SA. Soil erodibility plays a crucial role in what extent of gully erosion severity is attained from human impact, contributing to the east–west imbalance of erosion in SA. Soil erosion rates from gullying and badlands are limited but suggest that it ranges between 30 and 123 t ha−1 yr−1 in the more prominent areas. These soil loss rates are comparable to global rates where gullying is concerned; moreover, they are up to four orders of magnitude higher than the estimated baseline erosion rate. On a national scale, the complexity of gullying is evident from the different temporal timings of (re)activation or stabilizing and different evolution rates. Continued efforts are required to understand the intricate interplay of human activities, climate, and preconditions determining soil erodibility. In SA, more medium- to long-term studies are required to understand better how changing control factors affect gully evolution. More research is needed to implement and appraise mitigation measures, especially using indigenous knowledge. Establishing (semi)-automated mapping procedures would aid in gully monitoring and assessing the effectiveness of implemented mitigation measures. More urgently, the expected changes in climate and land-use necessitate further research on how environmental change affects short-term gully erosion dynamics.  相似文献   

5.
Drainage network extension in semi‐arid rangelands has contributed to a large increase in the amount of fine sediment delivered to the coastal lagoon of the Great Barrier Reef, but gully erosion rates and dynamics are poorly understood. This study monitored annual erosion, deposition and vegetation cover in six gullies for 13 years, in granite‐derived soils of the tropical Burdekin River basin. We also monitored a further 11 gullies in three nearby catchments for 4 years to investigate the effects of grazing intensity. Under livestock grazing, the long‐term fine sediment yield from the planform area of gullies was 6.1 t ha‐1 yr‐1. This was 7.3 times the catchment sediment yield, indicating that gullies were erosion hotspots within the catchment. It was estimated that gully erosion supplied between 29 and 44% of catchment sediment yield from 4.5% of catchment area, of which 85% was derived from gully wall erosion. Under long‐term livestock exclusion gully sediment yields were 77% lower than those of grazed gullies due to smaller gully extent, and lower erosion rates especially on gully walls. Gully wall erosion will continue to be a major landscape sediment source that is sensitive to grazing pressure, long after gully length and depth have stabilised. Wall erosion was generally lower at higher levels of wall vegetation cover, suggesting that yield could be reduced by increasing cover. Annual variations in gully head erosion and net sediment yield were strongly dependent on annual rainfall and runoff, suggesting that sediment yield would also be reduced if surface runoff could be reduced. Deposition occurred in the downstream valley segments of most gullies. This study concludes that reducing livestock grazing pressure within and around gullies in hillslope drainage lines is a primary method of gully erosion control, which could deliver substantial reductions in sediment yield. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

6.
Due to the extensive gullying from historically excessive erosion in the loess plateau of China, much of this region is being converted to native grass and shrub vegetation. Tunnel scour and mass wasting are important gully erosion processes resulting from preferential flow through macropores ( pores 〉 1 mm diameter). The objective of this study is to assess the changes with time in macropore flow characteristics of soils on the Loess Plateau following conversion to grass vegetation and the associated degree of mass wasting of gully faces. Ridge areas that had been revegetated for 1 year, 6 years, and 〉 15 years following tilling, and for 6 years following contour-ditching and the adjacent gully faces were characterized for their macropore and soil matrix properties on a 50 cm by 50 cm area. The total number of macropores increased from 11.6/m^2 to 39.6/m2 from 1 to 6 years and to 51.6/m2 after 15 years of revegetation following tillage. The macroporosity increased from 0.0008 m^3/m^3 to 0.0018 m^3/m^3 from 1 to 6 years of revegetation following tillage but the lowest macroporosity (0.0005 m3/m3) was 6 years of revegetation following contour-ditching. The contourditched area had the lowest infiltration rate (95 m/d) through the soil matrix (areas without macropores) with the tilled areas having similar infiltration rates regardless of the number of years of revegetation (averaged 146 m/d). Due to tunnel scour erosion of macropores during infiltration into the area revegetated for 1 year, pore diameters enlarged by more than 200% resulting in this condition having the highest individual macropore infiltration rates (7967 m/d). Macropores in all other areas were stable with no tunnel scour erosion of macropores. The total capacity for infiltration through macropores increased significantly with time following revegetation. The number of macropores on the gully faces was triple (92.8/m2) and the macroporosity quadruple (0.004 m3/m3) that of the ridge surfaces. The upper gully faces exhibited 1.1 slumps m^-1 for a total soil loss of 48622 kg per ha.  相似文献   

7.
Predicting the location of gully heads in various environments is an important step towards predicting gully erosion rates. So far, field data collection and modelling of topographic thresholds for gully head development has mainly focused on gullies that formed in forested areas, rangelands, pastures and cropland. Such information for gullies in badlands however is very scarce. Therefore, this paper aims to extend the database on gully head topographical thresholds through data collection in a badland area and to improve the prediction of gully heads forming at sites with a very low erosion resistance value. For this, we chose a badland site located in central Italy that is characterized by biancana forms and both active and dormant gullies. The definition of the conditions under which present‐day gully heads developed allowed a better modelling of the gully head threshold equation, with modification of a previous model and the exemplification of how to use the updated model. The model shows that the resistance to gully head retreat depends on slope gradient and drainage area at gully heads, land use at the moment of gully development (as numerically expressed using parameters derived from the Runoff Curve Number method), surface rock fragment cover, presence of joints, pipes, and factors/processes affecting detachment rate. This study attempted to better understand environmental conditions that control the development of gully heads in badlands through a combination of field data collection of gully heads, an analysis of land use changes over 10 centuries, focusing on the period 1820–2005, and land use management through repeat photography and a critical examination of historical documents. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

8.
MODELING EPHEMERAL GULLY EROSION FOR CONSERVATION PLANNING   总被引:9,自引:0,他引:9  
1INTRODUCTIONEphemeral gully erosion,which is caused by concentrated flow within cultivated farm fields,is distinct from rill erosion.Ephemeral gully erosion is also distinct from gully erosion in permanent,deep,incised channels,formed by headcuts moving upstream.Ephemeral gully erosion is often overlooked.It is not estimated with rill-interrill erosion prediction technology such as the Revised Universal Soil Loss Equation(Renard et al.,1997),and it is often not measured in field survey…  相似文献   

9.
The Southern U.S. Piedmont ranging from Virginia to Georgia underwent severe gully erosion over a century of farming mainly for cotton (1800s–1930s). Although tree succession blanketed much of this region by the middle 20th century, gully erosion still occurs, especially during wet seasons. While many studies on gully erosion have focused on soil loss, soil carbon exchange, and stormwater response, the impacts on soil moisture, groundwater, and transpiration remain under-studied. Using a newly developed 2D hydrologic model, this study analyzes the impacts of gully erosion on hillslope hydrologic states and fluxes. Results indicate that increases in gully incision lead to reduction in groundwater table, root zone soil moisture, and transpiration. These reductions show seasonal variations, but the season when the reduction is maximum differs among the hydrologic variables. Spatially, the impacts are generally the greatest near the toe of the hillslope and reduce further away from it, although the reductions are sometimes non-monotonic. Overall, the impacts are larger for shallow gully depths and diminish as the incision goes deeper. Lastly, the extent of impacts on a heterogeneous hillslope is found to be very different with respect to a homogeneous surrogate made of dominant soil properties. These results show that through gully erosion, the landscape not only loses soil but also a large amount of water from the subsurface. The magnitude of water loss is, however, dependent on hydrogeologic and topographic configuration of the hillslope. The results will facilitate (a) mapping of relative susceptibility of landscapes to gullying, (b) understanding of the impacts of stream manipulations such as due to dredging on hillslope eco-hydrology, (c) prioritization of mitigation measures to prevent gullying, and (d) design of observation campaigns to assess the impacts of gullying on hydrologic response.  相似文献   

10.
PHYSICALPROCESSBASEDSOILEROSIONMODELINASMALLWATERSHEDINTHEHILLYLOESSREGION1CAIQiangguo2ABSTRACTAphysicalprocesbasedperstorm...  相似文献   

11.
A three year monitoring programme of gully‐head retreat was established to assess the significance of sediment production in a drainage network that expanded rapidly by gully‐head erosion on the low‐angled alluvio‐lacustrine Njemps Flats in semi‐arid Baringo District, Kenya. This paper discusses the factors controlling the large observed spatial and temporal variation in gully‐head retreat rates, ranging from 0 to 15 m a?1. The selected gullies differed in planform and in runoff‐contributing catchment area but soil material and land use were similar. The data were analysed at event and annual timescales. The results show that at annual timescale rainfall amount appears to be a good indicator of gully‐head retreat, while at storm‐event timescale rainfall distribution has to be taken into account. A model is proposed, including only rainfall (P) and the number of dry days (DD) between storms: which explains 56 per cent of the variation in retreat rate of the single‐headed gully of Lam1. A detailed sediment budget has been established for Lam1 and its runoff‐contributing area (RCA). By measuring sediment input from the RCA, the sediment output by channelized flow and linear retreat of the gully head for nine storms, it can be seen that erosion shifts between different components of the budget depending on the duration of the dry period (DD) between storms. Sediment input from the RCA was usually the largest component for the smaller storms. The erosion of the gully head occurred as a direct effect of runoff falling over the edge (GHwaterfall) and of the indirect destabilization of the adjacent walls by the waterfall erosion and by saturation (GHmass/storage). The latter component (GHmass/storage) was usually much larger that the former (GHwaterfall). The sediment output from the gully was strongly related to the runoff volume while the linear retreat, because of its complex behaviour, was not. Overall, the results show that the annual retreat is the optimal timescale to predict retreat patterns. More detailed knowledge about relevant processes and interactions is necessary if gully‐head erosion is to be included in event‐based soil erosion models. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
A typical gully sub-basin with a complex geomorphological form is used to do a model test of gravity erosion of loess by considering the sequence of slopes in a prototype gully creating a sequence of underlying surface forms in the upper reaches. The results show that the runoff from heavy rainfall is the main external force for the erosion of loess, and also is an important influencing factor to stimulate and intensify the development of gravity erosion. The soil structure and the height of the...  相似文献   

13.
1 INTRODUCTION Erosion caused by ephemeral flows is a frequent phenomenon in nature and contributes to the shape of the landscape. This type of erosion may cause great soil losses in agricultural areas, which are quickly transferred to the watershed outlets through the rill and gully network (Bennett et al., 2000; Poesen et al., 2003). Concentrated flow erosion is controlled by the erodibility of surface materials, climate, soil use and management, and watershed topography. Several metho…  相似文献   

14.
Topographic models provide a useful tool for understanding gully occurrence in the landscape but require reliable estimates of gully head drainage areas. Modern high-resolution topography data (collected using structure from motion photogrammetry or light detection and ranging) is increasingly used for topographic studies of gullies, but little work has been done to assess the variability of gully head drainage area estimates using different methods. This study evaluated alternative approaches to using high-resolution digital elevation models (DEMs) so that gully topographic models can be more readily applied to any area with suitably high-resolution data. Specifically, we investigated the impact of single- or multiple-direction flow routing algorithms, DEM hydrologic-enforcement procedures and spatial resolution on gully head drainage area estimation. We tested these methods on a 40 km2 site centred on Weany Creek, a low-relief semi-arid landscape draining towards the Great Barrier Reef, Australia. Using a subroutine to separate gully heads into those with divergent or convergent flow patterns upslope, we found that divergent flow conditions occurred at half of 484 studied gullies. Drainage areas estimated by different flow routing algorithms were more variable in these divergent cases than for convergent cases. This variation caused a significant difference between topographic threshold parameters (slope b and intercept k) derived from single- or multiple-direction flow routing algorithms, respectively. Different methods of hydrologic enforcement (filling or breaching) also affected threshold analysis, resulting in estimates of the exponent b being ~188% higher if the DEM was filled than if breached. The testing of the methods to date indicates that a finer resolution (≤2 m) DEM and a multiple-direction flow routing algorithm achieve the most realistic drainage area estimates in low-relief landscapes. For Weany Creek we estimated threshold parameters k = 0.033 and b = 0.189, indicating that it is highly susceptible to gully erosion.  相似文献   

15.
Gully erosion is a major environmental threat on the Moldavian Plateau (MP) of eastern Romania. The permanent gully systems consist of two main gully types. These are: (1) discontinuous gullies, which are mostly located on hillslopes and (2) large continuous gullies in valley bottoms. Very few studies have investigated the evolution of continuous gullies over the medium to longer term. The main objective of this study was to quantitatively analyse the development of continuous gullies over six decades (1961–2020). The article aimed at predicting temporal patterns of gully head erosion based on field data from multiple gullies. Fourteen representative continuous gullies were selected near the town of Barlad, most of them having catchment areas < 500 ha. Linear gully head retreat (LGHR) and areal gully growth (AGG) rates were quantified for six decades. Two main periods were distinguished and compared (i.e., the wet 1961–1980 period and the drier 1981–2020 period). Results indicate that gully erosion rates have significantly decreased since 1981. The mean LGHR of 7.7 m yr−1 over 60 years was accompanied by a mean AGG of 213 m2 yr−1. However, erosion rates between 1961 and 1980 were 4.0 times larger for LGHR and 5.9 times more for AGG compared to those for 1981–2020. Two regression models indicate that annual precipitation depth (P) is the primary controlling factor, explaining 57% of LGHR and 53% of AGG rate. The contributing area (CA) follows, with ~33%. Only 43% of total change in LGHR and 46% of total change in AGG results from rainfall-induced runoff during the warm season. Accordingly, the cold season (with associated freeze–thaw processes and snowmelt runoff) has more impact on gully development. The runoff pattern, when flow enters the trunk gully head, is largely controlled by the upper approaching discontinuous gully.  相似文献   

16.
This paper investigates the spatial and temporal variations of runoff, erosion and rate of sediment transport on an agricultural field submitted to natural rainfalls. The site, located in the Eastern Townships (Québec, Canada), is a corn field (10000 m2) where sheetwash erosion is active. Water (Q) and sediment (Qs) discharges were measured from June to October at eight locations on the field and for ten rainfall events. Analysis of the data was carried out on an aggregate data set and on the distributed measurements in time and space. The results showed that changes in vegetation, soil compaction and crusting are critical in determining temporal variations of runoff and erosion. Until August, the increase in soil compaction reduced infiltration capacity and depression storage and generated greater runoff for a given rainfall intensity (I). Sediment transport decreased as particle detachment is less likely to occur when vegetation breaks the drop impact and the soil surface is sealed. Later in the season, we observed an increase in sediment concentration associated with the presence of burrowing insects and harvest activity, providing loose sediments to the broken down surface. Intercepts and slopes of the relationship between Q and Qs also vary during the period of measurement. High sediment availability over the soil surface in June and October gives high intercept values. The slope of the relationship is more stable but difficult to estimate for extreme events (high values of I or low Q values) where the number of sampled points are small. During a rainfall, the response of the field is dominated by the topography and drainage area. The largest amount of runoff and erosion occurred on straight and steep slopes with small drainage areas, and on converging gentle slopes with large drainage areas. Although aggregate runoff and erosion values are decreasing with drainage area, parameters of the Qs-Q relationship for different locations on the field are not statistically different. These results bear important consequences for models of sheetwash erosion on agricultural fields.  相似文献   

17.
Gully erosion is a major environmental problem, posing significant threats to sustainable development. However, insights on techniques to prevent and control gullying are scattered and incomplete, especially regarding failure rates and effectiveness. This review aims to address these issues and contribute to more successful gully prevention and control strategies by synthesizing the data from earlier studies. Preventing gully formation can be done through land use change, applying soil and water conservation techniques or by targeted measures in concentrated flow zones. The latter include measures that increase topsoil resistance and vegetation barriers. Vegetation barriers made of plant residues have the advantage of being immediately effective in protecting against erosion, but have a short life expectancy as compared to barriers made of living vegetation. Once deeply incised, the development of gullies may be controlled by diverting runoff away from the channel, but this comes at the risk of relocating the problem. Additional measures such as headcut filling, channel reshaping and headcut armouring can also be applied. To control gully channels, multiple studies report on the use of check dams and/or vegetation. Reasons for failures of these techniques depend on runoff and sediment characteristics and cross-sectional stability and micro-environment of the gully. In turn, these are controlled by external forcing factors that can be grouped into (i) geomorphology and topography, (ii) climate and (iii) the bio-physical environment. The impact of gully prevention and control techniques is addressed, especially regarding their effect on headcut retreat and network development, the trapping of sediment by check dams and reduction of catchment sediment yield. Overall, vegetation establishment in gully channels and catchments plays a key role in gully prevention and control. Once stabilized, gullies may turn into rehabilitated sites of lush vegetation or cropland, making the return on investment to prevent and control gullies high. © 2020 John Wiley & Sons, Ltd.  相似文献   

18.
Erosion caused by concentrated flows in agricultural areas is responsible for important soil losses, and rapid sediment transfer through the channel network. The main factors controlling concentrated flow erosion rates include the erodibility of soil materials, soil use and management, climate and watershed topography. In this paper, two topographic indices, closely related to mathematical expressions suggested by different authors, are used to characterize the influence of watershed topography on gully erosion. The AS1 index is defined as the product of the watershed area and the partial area‐weighted average slope. The AS2 index is similar to the AS1 but uses the swale slope as the weighting factor. Formally, AS2 is the product of the watershed area and the length‐weighted average swale slope. From studies made using different ephemeral gully erosion databases, it is shown that a high correlation consistently exists between the topographic indices and the volume of eroded soil. The resulting relationships are therefore useful to assess soil losses from gully erosion, to identify the most susceptible watersheds within large areas, and to compare the susceptibility to gully erosion among different catchments. This information is also important in studying the response of natural drainage network systems to different rainfall inputs. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
This paper describes an analysis of natural and anthropogenic factors controlling the evolution of gullies in a rural basin in the basaltic upland in the State of Rio Grande do Sul, Southern Brazil. In this region of deep ferrallitic soils with more than 60% clay, runoff and erosion are of increasing concern. In the TaboAo drainage basin (100 km^2), gully erosion was studied in a field survey that measured rills and gullies. Eighty-four gullies were identified. They had an average length of 136 m, were 10 m wide, and 3 m deep and had a volume of 15.458 m3. Each gully was characterised in terms of factors that included slope, geological structure, presence of piping, drainage, soil use, and the presence of surface and subsurface flow. On average, the main channels had knickpoints varying from 2 m to 7 m, and their evolution in the vertical plane increased until bed-rock basalt material was reached, after which gullies increase in width and length. Gully development was also monitored from 1991 to 2003. Subsurface flow appears to be the principal agent controlling their development. Results show that both natural (slope, surface curvature, geological structure and rainfall) and anthropogenic (soil use, road construction) factors are important in gully development. The change in cultural practices throughout the drainage basin from conventional to direct seeding has led to increased subsurface flow, which was more important than surface runoff in causing erosion. However, the higher rainfall during E1 Nifio Southern Oscillation (ENSO) events and the consequently higher subsurface flow were the dominant factors. From 1991 to 2003 a total land loss of 1,013 m3 was observed in one gully, with 236 m^3 lost during the 1992 ENSO and 702 m3 during the 1997 ENSO; 95% of the total volume lost occurred during ENSO periods.  相似文献   

20.
The sediment budget of the small research catchment of Cal Parisa (Vallcebre, Eastern Pyrenees) was studied by hydrological monitoring and assessment of the erosion rates in the major sediment sources. This area is characterized by clayey mudrock prone to landsliding and badland erosion, but the catchment was selected in an area free of major badland features, as a representative of middle mountain regions where a system of terraces and drainage ditches had been built for agricultural use but is now abandoned. Streamwater chemistry is dominated by Ca2+ and HCO3 at concentrations close to calcite saturation. Total dissolved solids show dilution during runoff peaks and positive hysteresis loops that support a slow contribution of subsurface water. Relative dissolved ion concentrations are different for each event analysed. Particulate sediment yield is very low and represents only about 1 per cent of gross erosion in the catchment. Mineralogical analysis of suspended sediments shows an enrichment in calcite because of precipitation. Chemical analysis of suspended sediments, using common one-litre water samples, shows higher contents of Ca, P and Mn in transported sediment than in sediment source areas, attributed to the precipitation of calcite, and enrichment in organic particulate matter during events respectively for the two first elements, whereas enrichment in Mn remains uncertain. Solid matter yield is therefore clearly dominated by dissolved transport as a result of both high calcium bicarbonate concentrations in runoff waters and strong suspended sediment conveyance discontinuities. Land conservation structures are very effective because they are in good condition whereas the soil is covered by dense permanent vegetation. Nevertheless, this state is unstable because the network of drainage ditches needs maintenance; its spontaneous breakdown after abandonment may result in the rearrangement of the elementary stream network and gullying of old fields in hollows. © 1997 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号