首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non‐natural RNA modifications have been widely used to study the function and structure of RNA. Expanding the study of RNA further requires versatile and efficient tools for site‐specific RNA modification. We recently established a new strategy for the site‐specific modification of RNA based on a functionality‐transfer reaction between an oligodeoxynucleotide (ODN) probe and an RNA substrate. 2′‐Deoxy‐6‐thioguanosine was used to anchor the transfer group, and the 4‐amino group of cytosine or the 2‐amino group of guanine was specifically modified. In this study, 2′‐deoxy‐4‐thiothymidine was adopted as a new platform to target the 6‐amino group of adenosine. The (E)‐pyridinyl vinyl keto transfer group was attached to the 4‐thioT in the ODN probe, and it was efficiently and specifically transferred to the 6‐amino group of the opposing adenosine in RNA in the presence of CuCl2. This method expands the available RNA target sites for specific modification.  相似文献   

2.
2′‐Fluoro‐2′‐deoxyguanosine has been reported to have potent anti‐influenza virus activity in vitro and in vivo. Herein we describe the synthesis and biological evaluation of 6‐modified 2′‐fluoro‐2′‐deoxyguanosine analogues and their corresponding phosphoramidate ProTides as potential anti‐influenza virus agents. Whereas the parent nucleosides were devoid of antiviral activity in two different cellular assays, the 5′‐O‐naphthyl(methoxy‐L ‐alaninyl) ProTide derivatives of 6‐O‐methyl‐2′‐fluoro‐2′‐deoxyguanosine, 6‐O‐ethyl‐2′‐fluoro‐2′‐deoxyguanosine, and 2′‐deoxy‐2′‐fluoro‐6‐chloroguanosine, and the 5′‐O‐naphthyl(ethoxy‐L ‐alaninyl) ProTide of 6‐O‐ethyl‐2′‐fluoro‐2′‐deoxyguanosine displayed antiviral EC99 values of ~12 μM . The antiviral results are supported by metabolism studies. Rapid conversion into the L ‐alaninyl metabolite and then 6‐modified 2′‐fluoro‐2′‐deoxyguanosine 5′‐monophosphate was observed in enzymatic assays with yeast carboxypeptidase Y or crude cell lysate. Evidence for efficient removal of the 6‐substituent on the guanine part was provided by enzymatic studies with adenosine deaminase, and by molecular modeling of the nucleoside 5′‐monophosphates in the catalytic site of a model of ADAL1, thus indicating the utility of the double prodrug concept.  相似文献   

3.
(2′S)‐2′‐Deoxy‐2′‐C‐methyluridine and (2′R)‐2′‐deoxy‐2′‐C‐methyluridine were incorporated in the 3′‐overhang region of the sense and antisense strands and in positions 2 and 5 of the seed region of siRNA duplexes directed against Renilla luciferase, whereas (2′S)‐2′‐deoxy‐2′‐C‐methylcytidine was incorporated in the 6‐position of the seed region of the same constructions. A dual luciferase reporter assay in transfected HeLa cells was used as a model system to measure the IC50 values of 24 different modified duplexes. The best results were obtained by the substitution of one thymidine unit in the antisense 3′‐overhang region by (2′S)‐ or (2′R)‐2′‐deoxy‐2′‐C‐methyluridine, reducing IC50 to half of the value observed for the natural control. The selectivity of the modified siRNA was measured, it being found that modifications in positions 5 and 6 of the seed region had a positive effect on the ON/OFF activity.  相似文献   

4.
A new diamine, 2,2′‐bis(3,4,5‐trifluorophenyl)‐4,4′‐diaminodiphenyl ether (FPAPE) was synthesized through the Suzuki coupling reaction of 2,2′‐diiodo‐4,4′‐dinitrodiphenyl ether with 3,4,5‐trifluorophenylboronic acid to produce 2,2′‐bis(3,4,5‐trifluorophenyl)‐4,4′‐dinitrodiphenyl ether (FPNPE), followed by palladium‐catalyzed hydrazine reduction of FPNPE. FPAPE was then utilized to prepare a novel class of highly fluorinated all‐aromatic poly(ether‐imide)s. The chemical structure of the resulting polymers is well confirmed by infrared and nuclear magnetic resonance spectroscopic methods. Limiting viscosity numbers of the polymer solutions at 25 °C were measured through the extrapolation of the concentrations used to zero. Mn and Mw of these polymers were about 10 000 and 25 000 g mol?1, respectively. The polymers showed a good film‐forming ability, and some characteristics of their thin films including color and flexibility were investigated qualitatively. An excellent solubility in polar organic solvents was observed. X‐ray diffraction measurements showed that the fluoro‐containing polymers have a nearly amorphous nature. The resulting polymers had Tg values higher than 340 °C and were thermally stable, with 10% weight loss temperatures being recorded above 550 °C. Based on the results obtained, FPAPE can be considered as a promising design to prepare the related high performance polymeric materials. Copyright © 2011 Society of Chemical Industry  相似文献   

5.
A new diamine 5,5′‐bis[4‐(4‐aminophenoxy)phenyl]‐hexahydro‐4,7‐methanoindan ( 3 ) was prepared through the nucleophilic displacement of 5,5′‐bis(4‐hydroxylphenyl)‐hexahydro‐4,7‐methanoindan ( 1 ) with p‐halonitrobenzene in the presence of K2CO3 in N,N‐dimethylformamide (DMF), followed by catalytic reduction with hydrazine and Pd/C in ethanol. A series of new polyamides were synthesized by the direct polycondensation of diamine 3 with various aromatic dicarboxylic acids. The polymers were obtained in quantitative yields with inherent viscosities of 0.76–1.02 dl g−1. All the polymers were soluble in aprotic dipolar solvents such as N,N‐dimethylacetamide (DMAc) and N‐methyl‐2‐pyrrolidone (NMP), and could be solution cast into transparent, flexible and tough films. The glass transition temperatures of the polyamides were in the range 245–282 °C; their 10% weight loss temperatures were above 468 °C in nitrogen and above 465 °C in air. © 2000 Society of Chemical Industry  相似文献   

6.
Palladium‐catalyzed C N bond forming reactions of 6‐bromo‐ as well as 6‐chloropurine ribonucleosides and the 2′‐deoxy analogues with arylamines are described. Efficient conversions were observed with palladium(II) acetate/Xantphos/cesium carbonate, in toluene at 100 °C. Reactions of the bromonucleoside derivatives could be conducted at a lowered catalytic loading [5 mol% Pd(OAc)2/7.5 mol% Xantphos], whereas good product yields were obtained with a higher catalyst load [10 mol% Pd(OAc)2/15 mol% Xantphos] when the chloro analogue was employed. Among the examples evaluated, silyl protection for the hydroxy groups appears better as compared to acetyl. The methodology has been evaluated via reactions with a variety of arylamines and by synthesis of biologically relevant deoxyadenosine and adenosine dimers. This is the first detailed analysis of aryl amination reactions of 6‐chloropurine nucleosides, and comparison of the two halogenated nucleoside substrates.  相似文献   

7.
2,2′‐Position aryl‐substituted tetracarboxylic dianhydrides including 2,2′‐bis(biphenyl)‐4,4′,5,5′‐biphenyl tetracarboxylic dianhydride and 2,2′‐bis[4‐(naphthalen‐1‐yl)phenyl)]‐4,4′,5,5′‐biphenyl tetracarboxylic dianhydride were synthesized. A new series of aromatic polyimides (PIs) were synthesized via a two‐step procedure from 3,3′,4,4′‐biphenyl tetracarboxylic dianhydride and the newly synthesized tetracarboxylic dianhydrides monomers reacting with 2,2′‐bis[4′‐(3″,4″,5″‐trifluorophenyl)phenyl]‐4,4′‐biphenyl diamine. The resulting polymers exhibited excellent organosolubility and thermal properties associated with Tg at 264 °C and high initial thermal decomposition temperatures (T5%) exceeding 500 °C in argon. Moreover, the fabricated sandwich structured memory devices of Al/PI‐a/ITO was determined to present a flash‐type memory behaviour, while Al/PI‐b/ITO and Al/PI‐c/ITO exhibited write‐once read‐many‐times memory capability with different threshold voltages. In addition, Al/polymer/ITO devices showed high stability under a constant stress or continuous read pulse voltage of ? 1.0 V. Copyright © 2011 Society of Chemical Industry  相似文献   

8.
4‐(4′‐Aminophenyl)‐1,2,4‐triazolidine‐3,5‐dione ( 1 ) was reacted with 1,8‐naphthalic anhydride ( 2 ) in a mixture of acetic acid and pyridine (3 : 2) under refluxing temperature and gave 4‐(4′‐N‐1,8‐naphthalimidophenyl)‐1,2,4‐triazolidine‐3,5‐dione ( NIPTD ) ( 3 ) in high yield and purity. The compound NIPTD was reacted with excess n‐propylisocyanate in N,N‐dimethylacetamide solution and gave 1‐(n‐propylamidocarbonyl)‐4‐[4′‐(1,8‐naphthalimidophenyl)]‐1,2,4‐triazolidine‐3,5‐dione ( 4 ) and 1,2‐bis(n‐propylamidocarbonyl)‐4‐[4′‐(1,8‐naphthalimidophenyl)]‐1,2,4‐ triazolidine‐3,5‐dione ( 5 ) as model compounds. Solution polycondensation reactions of monomer 3 with hexamethylene diisocyanate ( HMDI ), isophorone diisocyanate ( IPDI ), and tolylene‐2,4‐diisocyanate ( TDI ) were performed under microwave irradiation and conventional solution polymerization techniques in different solvents and in the presence of different catalysts, which led to the formation of novel aliphatic‐aromatic polyureas. The polycondensation proceeded rapidly, compared with conventional solution polycondensation, and was almost completed within 8 min. These novel polyureas have inherent viscosities in a range of 0.06–0.20 dL g?1 in conc. H2SO4 or DMF at 25°C. Some structural characterization and physical properties of these novel polymers are reported. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2861–2869, 2003  相似文献   

9.
Analysis of the recently solved X‐ray crystal structures of Saccharomyces cerevisiae ribonucleotide reductase I (ScRnr1) in complex with effectors and substrates led to the discovery of a conserved water molecule located at the active site that interacted with the 2′‐hydroxy group of the nucleoside ribose. In this study 2′‐(2‐hydroxyethyl)‐2′‐deoxyadenosine 1 and the 5′‐diphosphate derivative 2 were designed and synthesized to see if the conserved water molecule could be displaced by a hydroxymethylene group, to generate novel RNR inhibitors as potential antitumor agents. Herein we report the synthesis of analogues 1 and 2 , and the co‐crystal structure of adenosine diphosphate analogue 2 bound to ScRnr1, which shows the conserved water molecule is displaced as hypothesized.  相似文献   

10.
The reaction of 2‐amino‐3‐carbomethoxythiophene ( 1a ) and 2‐amino‐3‐carboethoxy‐4,5‐dimethylthiophene ( 1b ) with methyl‐ or ethylmagnesium chloride leads to new 3‐(1‐aminoalkylidene)‐3H‐thiophen‐2‐ones 4a—d in good yields (60—87%). Treatment of the compounds 4a and 4c with catalytic amounts of p‐TsOH in boiling CHCl3 afforded the (±)‐4,4′‐bis‐(1‐aminoalkylidene)‐3′,4′‐4H,2′H‐[2,3′]bithiophenyl‐5,5′‐diones 9a and 9b as new interesting heterocycles in preparatively useful yields (60/mdash;65%).  相似文献   

11.
We report a new method for the preparation of asymmetric diamines using 4,4′‐oxydianiline (4,4′‐ODA) as the starting material. By controlling the equivalents of bromination agent, N‐bromosuccinimide, we were able to attach bromide and phenyl substituents at the 2‐ or 2,2′,6‐positions of 4,4′‐ODA. Thus, four new asymmetric aromatic diamines, 2‐bromo‐4,4′‐oxydianiline (6), 2,2′,6‐tribromo‐4,4′‐oxydianiline (7), 2‐phenyl‐4,4′‐oxydianiline (8) and 2,2′,6‐triphenyl‐4,4′‐oxydianiline (9), were synthesized by this method. Their structural asymmetry was confirmed using 1H NMR spectroscopy. Asymmetric polyimides (PI10–PI13) were prepared from these diamines and three different dianhydrides (pyromellitic dianhydride (PMDA), 3,3′,4,4′‐biphenyltetracarboxylic dianhydride and 2,2‐bis(3,4‐dicarboxyphenyl)hexafluoropropane dianhydride) in refluxing m‐cresol. The formed polyimides, except PI10a derived from 6 and PMDA, were all soluble in m‐cresol without premature precipitation during polymerization. These polyimides with inherent viscosity of 0.41–0.96 dL g?1, measured at a concentration of 0.5 g dL?1 in N‐methyl‐2‐pyrrolidone at 30 °C, can form tough and flexible films. Because of the structural asymmetry, they also exhibited enhanced solubility in organic solvents. Especially, polyimides PI11a and PI13a derived from 7 and 9 with rigid PMDA were soluble in various organic solvents at room temperature. The structural asymmetry of the prepared polyimides was also evidenced from 1H NMR spectroscopy. In the 1H NMR spectrum of PI11a, the protons of pyromellitic moiety appeared in an area ratio of 1:2:1 at three different chemical shifts, which were assigned to head‐to‐head, head‐to‐tail and tail‐to‐tail configurations, respectively. These polyimides also exhibited good thermal stability. Their glass transition temperatures ranged from 297 to 344 °C measured using thermal mechanical analysis. © 2013 Society of Chemical Industry  相似文献   

12.
Oligonucleotides containing various adducts, including ethyl, benzyl, 4‐hydroxybutyl and 7‐hydroxyheptyl groups, at the O4 atom of 5‐fluoro‐O4‐alkyl‐2′‐deoxyuridine were prepared by solid‐phase synthesis. UV thermal denaturation studies demonstrated that these modifications destabilised the duplex by approximately 10 °C, relative to the control containing 5‐fluoro‐2′‐deoxyuridine. Circular dichroism spectroscopy revealed that these modified duplexes all adopted a B‐form DNA structure. O6‐Alkylguanine DNA alkyltransferase (AGT) from humans (hAGT) was most efficient at repair of the 5‐fluoro‐O4‐benzyl‐2′‐deoxyuridine adduct, whereas the thymidine analogue was refractory to repair. The Escherichia coli AGT variant (OGT) was also efficient at removing O4‐ethyl and benzyl adducts of 5‐fluoro‐2‐deoxyuridine. Computational assessment of N1‐methyl analogues of the O4‐alkylated nucleobases revealed that the C5‐fluorine modification had an influence on reducing the electron density of the O4?Cα bond, relative to thymine (C5‐methyl) and uracil (C5‐hydrogen). These results reveal the positive influence of the C5‐fluorine atom on the repair of larger O4‐alkyl adducts to expand knowledge of the range of substrates able to be repaired by AGT.  相似文献   

13.
We report the synthesis, properties, and in vitro and in vivo applications of 2′‐O‐methoxyethyl‐4′‐thioRNA (MOE‐SRNA), a novel type of hybrid chemically modified RNA. In its hybridization with complementary RNA, MOE‐SRNA showed a moderate improvement of Tm value (+3.4 °C relative to an RNA:RNA duplex). However, the results of a comprehensive comparison of the nuclease stability of MOE‐SRNA relative to 2′‐O‐methoxyethylRNA (MOERNA), 2′‐O‐methyl‐4′‐thioRNA (Me‐SRNA), 2′‐O‐methylRNA (MeRNA), 4′‐thioRNA (SRNA), and natural RNA revealed that MOE‐SRNA had the highest stability (t1/2>48 h in human plasma). Because of the favorable properties of MOE‐SRNA, we evaluated its in vitro and in vivo potencies as an anti‐microRNA oligonucleotide against miR‐21. Although the in vitro potency of MOE‐SRNA was moderate, its in vivo potency was significant for the suppression of tumor growth (similar to that of MOERNA).  相似文献   

14.
A series of sugar‐modified derivatives of cytostatic 7‐heteroaryl‐7‐deazaadenosines (2′‐deoxy‐2′‐fluororibo‐ and 2′‐deoxy‐2′,2′‐difluororibonucleosides) bearing an aryl or heteroaryl group at position 7 was prepared and screened for biological activity. The difluororibonucleosides were prepared by non‐ stereoselective glycosidation of 6‐chloro‐7‐deazapurine with benzoyl‐protected 2‐deoxy‐2,2‐difluoro‐D ‐erythro‐pentofuranosyl‐1‐mesylate, followed by amination and aqueous Suzuki cross‐couplings with (het)arylboronic acids. The fluororibo derivatives were prepared by aqueous palladium‐catalyzed cross‐coupling reactions of the corresponding 7‐iodo‐7‐deazaadenine 2′‐deoxy‐2′‐fluororibonucleoside 20 with (het)arylboronic acids. The key intermediate 20 was prepared by a six‐step sequence from the corresponding arabinonucleoside by selective protection of 3′‐ and 5′‐hydroxy groups with acid‐labile groups, followed by stereoselective SN2 fluorination and deprotection. Some of the title nucleosides and 7‐iodo‐7‐deazaadenine intermediates showed micromolar cytostatic or anti‐HCV activity. The most active were 7‐iodo and 7‐ethynyl derivatives. The corresponding 2′‐deoxy‐2′,2′‐difluororibonucleoside 5′‐O‐triphosphates were found to be good substrates for bacterial DNA polymerases, but are inhibitors of human polymerase α.  相似文献   

15.
A series of cycloSal‐phosphate prodrugs of a recently described new class of nucleoside cytostatics (6‐hetaryl‐7‐deazapurine ribonucleosides) was prepared. The corresponding 2′,3′‐isopropylidene 6‐chloro‐7‐deazapurine nucleosides were converted into 5‐O′‐cycloSal‐phosphates. These underwent a series of Stille or Suzuki cross‐couplings with diverse (het)arylstannanes or ‐boronic acids to yield the protected 6‐(het)aryl‐7‐deazapurine pronucleotides that were subsequently deprotected to give 12 derivatives of free pronucleotides. The in vitro cytostatic effect of the pronucleotides was compared with parent nucleoside analogues. In most cases, the activity of the pronucleotide was similar to or somewhat lower than that of the corresponding parent nucleosides, with the exception of 7‐fluoro pronucleotides 13 a , 13 b , and 13 d , which had exhibited GIC50 values that were improved by one order of magnitude (to the low nanomolar range). The presence of a cycloSal‐phosphate group also influenced selectivity toward various cell lines. Several pronucleotides were found which strongly inhibit human adenosine kinase but only weakly inhibit the MTB adenosine kinase.  相似文献   

16.
Palladium‐catalysed monophosphorylation of (R)‐2,2′‐bisperfluoroalkanesulfonates of BINOL (RF=CF3 or C4F9) by a diaryl phosphinate [Ar2P(O)H] followed by phosphine oxide reduction (Cl3SiH) then lithium diisopropylamide‐mediated anionic thia‐Fries rearrangement furnishes enantiomerically‐pure (R)‐2′‐diarylphosphino‐2′‐hydroxy‐3′‐perfluoralkanesulfonyl‐1,1′‐binaphthalenes [(R)‐ 8ab and (R)‐ 8g–j ], which can be further diversified by Grignard reagent (RMgX)‐mediated CF3‐displacement [→(R)‐ 8c–f ]. Coupling of (R)‐ 8a–j with (S)‐1,1′‐binaphthalene‐2,2′‐dioxychlorophosphine (S)‐ 9 generates 3′‐sulfonyl BINAPHOS ligands (R,S)‐ 10a–j in good yields (43–82%). These new ligands are of utlility in the asymmetric hydrophosphonylation of styrene ( 1 ) by 4,4,5,5‐tetramethyl‐1,3,2‐dioxaphospholane 2‐oxide ( 2 ), for which a combination of the chiral ligands with either [Pd(Cp)(allyl)] or [Pd(allyl)(MeCN)2]+/NaCH(CO2Me)2 proves to be a convenient and active pre‐catalyst system. A combination of an electron‐rich phosphine moiety and an electron‐deficient 3′‐sulfone moiety provides the best enantioselectivity to date for this process, affording the branched 2‐phenethenephosphonate, (−)‐iso‐ 3 , in up to 74% ee with ligand (R,S)‐ 10i , where Ar=p‐anisyl and the 3′‐SO2R group is triflone.  相似文献   

17.
A novel copolymer of polybenzimidazoles was prepared by copolymerization of 3,3′‐diaminobenzidine tetrahydrochloride, 3,4‐diaminobenzoic acid and isophthalic acid in polyphosphoric acid at 200 °C. The polymerization could be performed within 90–110 min with the assistance of microwave irradiation. The solubility of the copolymer obtained in N,N‐dimethylacetamide (DMAc) was improved compared with those of poly[2,2′‐(m‐phenylene)‐5,5′‐bibenzimidazole] and poly(2,5‐benzimidazole). Thus copolymer membranes could be readily prepared by dissolving the copolymer powders in DMAc with refluxing under ambient pressure. The decomposition temperature of the copolymer was about 520 °C in air according to thermogravimetric analysis data. The proton conductivity and mechanical strength of the phosphoric acid‐doped copolymer membranes were investigated at elevated temperatures. A conductivity of 0.09 S cm?1 at 180 °C and a tensile stress at break of 5.9 MPa at 120 °C were achieved for the acid‐doped copolymer membranes by doping acids in a 75 wt% H3PO4 solution. Copyright © 2010 Society of Chemical Industry  相似文献   

18.
The free‐radical polymerization behavior of 1‐vinyl,2‐pyrrolidone (NVP) was studied at low conversions, using capillary dilatometry. The aqueous media were kept at neutral pH and the studies were conducted isothermally, at 40 or 45°C. The azo‐type initiators used were 4,4′‐azobis‐4‐cyanopentanoic acid (ACPA), 2,2′‐azobisisobutyronitrile (AZBN), and 2,2′‐azobis[2‐(2‐imidazolin‐2‐yl)propane dihydrochloride] (ABDH). The monomer concentration and initiator concentration ranges were 1.17–2.34 mol L−1 and 1–8 mmol L−1, respectively. The rates of polymerization (Rp) and orders of reaction with respect to NVP and the initiator were evaluated and the kinetic equations were found to be Rp ∝ [NVP] [ACPA]1.2; Rp ∝ [NVP] [AZBN]1.1; and Rp ∝ [NVP]2.2 [ABDH]1.1. The polymers obtained were characterized by their viscosity numbers and correlation of the viscosity average molecular weights made with the type and amount of the azo initiator. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 239–246, 2000  相似文献   

19.
C8‐N‐arylamine adducts of 2′‐deoxyguanosine (2′‐dG) play an important role in the induction of the chemical carcinogenesis caused by aromatic amines. C8‐N‐acetyl‐N‐arylamine dG adducts that differ in their substitution pattern in the aniline moiety were converted by cycloSal technology into the corresponding C8‐N‐acetyl‐N‐arylamine‐2′‐deoxyguanosine‐5′‐triphosphates and C8‐NH‐arylamine‐2′‐deoxyguanosine‐5′‐triphosphates. Their conformation preference has been investigated by NOE spectroscopy and DFT calculations. The substrate properties of the C8‐dG adducts were studied in primer‐extension assays by using Klenow fragment exo? of Escherichia coli DNA polymerase I and human DNA polymerase β. It was shown that the incorporation was independent of the substitution pattern in the aryl moiety and the N‐acetyl group. Although the triphosphates were poor substrates for the human polymerases, they were incorporated twice before the termination of the elongation process occurred; this might demonstrate the importance of C8‐N‐arylamine‐2′‐deoxyguanosine‐5′‐triphosphates in chemical carcinogenesis.  相似文献   

20.
Imaging agents that target adenosine type 2A (A2A) receptors play an important role in evaluating new pharmaceuticals targeting these receptors, such as those currently being developed for the treatment of movement disorders like Parkinson′s disease. They are also useful for monitoring progression and treatment efficacy by providing a noninvasive tool to map changes in A2A receptor density and function in neurodegenerative diseases. We previously described the successful evaluation of two A2A‐specific radiotracers in both nonhuman primates and in subsequent human clinical trials: [123I]MNI‐420 and [18F]MNI‐444. Herein we describe the development of both of these radiotracers by selection from a series of A2A ligands, based on the pyrazolo[4,3‐e]‐1,2,4‐triazolo[1,5‐c]pyrimidine core of preladenant. Each of this series of 16 ligands was found to bind to recombinant human A2A receptor in the low nanomolar range, and of these 16, six were radiolabeled with either fluorine‐18 or iodine‐123 and evaluated in nonhuman primates. These initial in vivo results resulted in the identification of 7‐(2‐(4‐(4‐(2‐[18F]fluoroethoxy)phenyl)piperazin‐1‐yl)ethyl)‐2‐(furan‐2‐yl)‐7H‐pyrazolo[4,3‐e][1,2,4]triazolo[1,5‐c]pyrimidin‐5‐amine ([18F]MNI‐444) and 7‐(2‐(4‐(2‐fluoro‐4‐[123I]iodophenyl)piperazin‐1‐yl)ethyl)‐2‐(furan‐2‐yl)‐7H‐imidazo[1,2‐c]pyrazolo[4,3‐e]pyrimidin‐5‐amine ([123I]MNI‐420) as PET and SPECT radiopharmaceuticals for mapping A2A receptors in brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号