首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
YOLOv4目标检测算法主干网络庞大且参数量和计算量过多,难以部署在算力和存储资源有限的移动端嵌入式设备上。提出一种改进的YOLOv4目标检测算法,使用轻量化的ShuffleNet V2网络作为主干特征提取网络,更换模型激活函数及扩大卷积核,同时将YOLOv4网络中的普通卷积替换为深度可分离卷积,降低算法参数量、计算量和模型占用空间。在ShuffleNet V2网络结构的改进过程中分析并剪裁其基本组件,利用2个3 × 3卷积核级联的方式增强网络感受野,并使用Mish激活函数进一步提升网络检测精度和模型推理速度。在GPU平台和VisDrone 2020数据集上的实验结果表明,与YOLOv4算法相比,改进的YOLOv4算法在牺牲1.8个百分点的检测精度情况下,提高了27%的检测速度,压缩了23.7%的模型容量,并且能够充分发挥ZYNQ平台并行高速数据处理及低功耗的优势。  相似文献   

2.
针对日常道路场景下的车辆目标检测问题,提出一种轻量化的YOLOv4交通信息实时检测方法。首先,制作了一个多场景、多时段的车辆目标数据集,并利用K-means++算法对数据集进行预处理;其次,提出轻量化YOLOv4检测模型,利用MobileNet?v3替换YOLOv4的主干网络,降低模型的参数量,并引入深度可分离卷积代替原网络中的标准卷积;最后,结合标签平滑和退火余弦算法,使用LeakyReLU激活函数代替MobileNet?v3浅层网络中原有的激活函数,从而优化模型的收敛效果。实验结果表明,轻量化YOLOv4的权值文件为56.4 MB,检测速率为85.6 FPS,检测精度为93.35%,表明所提方法可以为实际道路中的交通实时信息检测及其应用提供参考。  相似文献   

3.
基于改进YOLOv4算法的轻量化网络设计与实现   总被引:2,自引:0,他引:2  
在嵌入式设备上进行目标检测时易受能耗和功耗等限制,使得传统目标检测算法效果不佳。为此,对YOLOv4算法进行优化,设计YOLOv4-Mini网络结构,将其特征提取网络由CSPDarkNet53改为MobileNetv3-large并进行INT8量化处理,其中网络结构利用PW和DW卷积操作代替传统卷积操作以大幅减少计算量。采用SE模块为通道施加注意力机制,激活函数层运用h-swish非线性激活函数,在保证精度的情况下降低网络计算量。同时,通过量化感知训练将权重转为INT8类型,以实现模型轻量化,进一步降低网络参数量和计算量,从而在嵌入式设备上完成无人机数据集的目标检测任务。在NVIDIA Jetson Xavier NX设备上进行测试,结果显示,YOLOv4-MobileNetv3网络的mAP为34.3%,FPS为30,YOLOv4-Mini网络的mAP为32.5%,FPS为73,表明YOLOv4-Mini网络能够在低功耗、低能耗的嵌入式设备上完成目标实时检测任务。  相似文献   

4.
针对现存交通标志识别模型参数量过大、检测速度慢和检测精度较低的问题,本文提出一种改进YOLOv4-tiny的交通标志识别算法.该算法将深度可分离卷积应用到YOLOv4-tiny的特征提取网络中,显著降低了主干网络的参数量和计算量.在特征融合阶段,将特征提取网络得到的不同层次特征图输入双向特征金字塔网络结构(BiFPN)中进行多尺度特征融合.最后,在损失函数设计过程中,使用Focal损失函数代替二分交叉熵损失函数,使检测过程中的正负样本数量不均衡问题得以解决.在TT100K数据集上的测试结果表明,该算法的平均精度均值达到87.5%,相比于YOLOv4-tiny提升了3.9%,模型大小为14MB,仅为YOLOv4-tiny的58%.该算法一定程度上减少了计算量和模型大小,并带来了检测速度和精度的提升.  相似文献   

5.
针对基于深度学习的海上船舶目标检测任务中存在检测网络复杂且参数量大、检测实时性差的问题, 提出一种加强特征融合的轻量化YOLOv4算法——MA-YOLOv4. 首先使用MobileNetv3替换主干网络, 引入新的激活函数SiLU并使用深度可分离卷积代替普通3×3卷积降低网络参数量; 其次加入自适应空间特征融合模块加强特征融合; 最后使用MDK-means聚类算法得到适用于船舶目标的锚框, 用Ship7000数据集进行训练和评估. 实验结果表明, 改进算法与YOLOv4相比, 模型参数量降低82%, mAP提高2.57%, FPS提高30帧/s, 能实现对海上船舶的高精度实时检测.  相似文献   

6.
针对YOLOv4模型在目标检测过程中参数量和计算量较大而导致实时性不佳的问题,提出了一种轻量化模型L-YOLOv4(Light YOLOv4)。该模型以YOLOv4特征金字塔结构和多尺度检测为基础,对模型结构进行了整体的优化和改进,采用MobileNetV2网络代替主干特征提取网络,同时用深度可分离卷积替换加强特征提取网络的普通卷积,从而达到减少网络参数量的目的。实验时对UA-DETRAC车辆数据集进行了基于旋转不变性下的数据增强,以缩小图像预测框与真实框之间的误差。多模型对比实验结果表明,L-YOLOv4模型相较于其他常用的轻量级检测模型有着更小的参数量和更快的FPS,与YOLOv4模型相比,参数量减少了83.21%,FPS增加了11帧,并减少了车辆漏检情况。  相似文献   

7.
针对YOLOv4的人脸口罩检测参数量和计算量大,难以部署到硬件资源有限的嵌入式设备问题,提出一种轻量型YOLOv4算法,并设计卷积神经网络硬件加速器。将骨干网络替换成MobileNetv2,使用深度可分离卷积替换掉部分普通卷积,压缩网络结构;改进SPP模块以满足Vitis AI支持的池化窗口尺寸;在颈部网络中,增加CSP结构使网络更容易优化。实验结果表明,改进的算法牺牲0.25%的检测精度,压缩84.42%的模型大小。在ZYNQ上,mAP达到95.16%,DPU平均利用率减少38%。  相似文献   

8.
针对当前YOLOv4目标检测网络结构复杂、参数多、训练所需的配置高以及实时检测每秒传输帧数(FPS)低的问题,提出一种基于YOLOv4的轻量化目标检测算法ML-YOLO。首先,用MobileNetv3结构替换YOLOv4的主干特征提取网络,从而通过MobileNetv3中的深度可分离卷积大幅减少主干网络的参数量;然后,用简化的加权双向特征金字塔网络(Bi-FPN)结构替换YOLOv4的特征融合网络,从而用Bi-FPN中的注意力机制提高目标检测精度;最后,通过YOLOv4的解码算法来生成最终的预测框,并实现目标检测。在VOC2007数据集上的实验结果表明,ML-YOLO算法的平均准确率均值(mAP)达到80.22%,与YOLOv4算法相比降低了3.42个百分点,与YOLOv5m算法相比提升了2.82个百分点;而ML-YOLO算法的模型大小仅为44.75 MB,与YOLOv4算法相比减小了199.54 MB,与YOLOv5m算法相比,只高了2.85 MB。实验结果表明,所提的ML-YOLO模型,一方面较YOLOv4模型大幅减小了模型大小,另一方面保持了较高的检测精度,表明该算法可以满足移动端或者嵌入式设备进行目标检测的轻量化和准确性需求。  相似文献   

9.
针对交通拥堵的车辆密集场景中检测目标重叠率高而导致漏检和误检的问题,提出了改进YOLOv3、CIoU损失函数优化以及SD-NMS优化算法(简记L-YOLOv3+CIoU Loss+SD-NMS)。利用深度可分离卷积、SE模块和Ghost模块改进YOLOv3的残差单元结构,以提高对密集目标的特征提取能力,减少网络模型参数量;采用完整交并比CIoU损失函数加快网络模型收敛速度,同时将多目标集合预测思想与DIoU-NMS有机结合,提出了SD-NMS优化算法,以降低漏检误检率。在BDD100K数据集上进行实验,结果表明,改进的目标检测算法召回率达到91.58%,精准率达到93.04%,与YOLOv3算法相比,召回率和精准率分别提升了12.09%和9.52%,具有更好的检测效果。  相似文献   

10.
为了轻量化模型,便于移动端设备的嵌入,对YOLOv4网络进行了改进.首先,用MobileNetV3作为主干网络,并使用深度可分离卷积替换加强特征提取网络的普通卷积,降低模型参数量;其次,在104×104特征图输出时融合空洞率为2的空洞卷积,与52×52的特征层进行特征融合,获取更多的语义信息和位置信息,细化特征提取能力,提升模型对极小目标的检测性能;最后,将原来的池化层使用3个5×5的Maxpool进行串联,减少计算量,提升检测速度.实验结果表明,在华为云2020数据集上,改进算法的mAP比YM算法提高了2.33%,在公共数据集VOC07+12上, mAP提高了3.12%, FPS比原来的YOLOv4算法提高了一倍多,参数量降低至原来的18%,证明了改进算法的有效性.  相似文献   

11.
柳长源  王琪  毕晓君 《控制与决策》2021,36(11):2707-2712
车辆目标检测是智能交通系统中的重要环节,针对传统车辆目标检测方法效率低、小目标检测效果不好、漏检率高等问题,提出一种基于改进的YOLOv3网络车辆目标检测算法.为了提高车辆检测的效率,利用轻量化模型MobileNetv2代替原YOLOv3中的特征提取网络,使得网络计算量相比原算法有所降低.为了有效提高网络对小尺度车辆目标的检测能力,网络将由高到低不同尺度的特征层融合之后进行目标检测.为了得到更丰富的语义特征信息和提高网络预测能力,增加了特征增强模块.同时针对车辆目标检测的特定应用,利用K-means方法对锚框重新聚类以满足车辆目标检测的特定需求.结合以上改进获得车辆目标检测网络YOLOv3-M2,实验结果表明,与YOLOv3相比,改进方法平均检测准确率增加约9%, 时间减少约一半,能够同时提高检测效率和小目标检测能力.  相似文献   

12.
针对传统列车轨道障碍物检测方法实时性差和对小目标检测精度低的不足,提出一种改进YOLOv5s检测网络的轻量化障碍物检测模型。引入更加轻量化的Mixup数据增强方式,替代算法中原有的Mosaic数据增强方式;引入GhostNet网络结构中的深度可分离卷积GhostConv,替代原有YOLOv5s模型中特征提取网络与特征融合网络中的普通卷积层,减小了模型的计算开销;在模型特征提取网络末端加入CA空间注意力机制,让算法在训练过程中减少了重要位置信息的丢失,弥补了改进GhostNet对检测精度的损失;将改进后的模型进行稀疏训练和通道剪枝操作,剪掉对检测精度影响不大的通道,同时保留重要的特征信息,使模型更加轻量化。实验结果表明,改进后的模型在自制的多样化轨道交通数据集上,相较于原始YOLOv5s算法,在模型大小减小9.7 MB,检测速度提高14 FPS的前提下,检测精度提升了1.0个百分点。同时与目前主流的检测算法对比,在检测精度与检测速度上也具有一定的优越性,适用于复杂轨道交通环境下的障碍物目标检测。  相似文献   

13.
针对无人机航拍场景下的实时目标检测任务, 以YOLOv5为基础进行改进, 给出了一种轻量化的目标检测网络YOLOv5-tiny. 通过将原CSPDarknet53骨干网络替换为MobileNetv3, 减小了网络模型的参数量, 有效提高了检测速度, 并进一步通过引入CBAM注意力模块和SiLU激活函数, 改善了因网络简化后导致的检测精度下降问题. 结合航拍任务数据集VisDrone的特性, 优化了先验框尺寸, 使用了Mosaic, 高斯模糊等数据增强方法, 进一步提高了检测效果. 与YOLOv5-large网络相比, 以降低17.4%的mAP为代价, 换取148%的检测效率(FPS)提升, 且与YOLOv5s相比, 在检测效果略优的情况下, 网络规模仅为其60%.  相似文献   

14.
电力系统的安全对于整个能源传输过程至关重要。针对输电线路下超大工程车辆和烟火为主要的外力破坏行为,对单阶段目标检测算法YOLOv5s进行改进,首先针对输电线路多雨雾烟尘等工作环境,引入限制对比度自适应直方图均衡算法CLAHE对图片进行去雾处理,提升图片对比度;针对检测目标距离较远的问题,在YOLOv5s网络的基础上添加CA注意力机制,提升了模型对目标的定位能力;将原网络中的最邻近差值采样方式替换为轻量级通用上采样算子CARAFE,更好地捕捉特征图的同时引入较小的参数量;最后在网络的特征融合层,使用具有通道混洗思想的GSConv卷积模块代替标准卷积模块,减小模型参数量,再利用slim_neck特征融合结构,强化目标关注度,达到减小模型参数量同时提升检测精度的效果。实验结果表明:改进后的YOLOv5s网络,mAP提升了4.4%,参数量减小了3.4%,权重模型内存减小了2.7%,证明了算法的有效性。  相似文献   

15.
为解决硬件平台资源受限条件下的实时航空目标检测需求,在基于改进YOLOv5的基础上,提出了一种针对移动端设备/边缘计算的轻量化航空目标检测方法。首先以MobileNetv3为基础搭建特征提取网络,设计通道注意力增强结构MNtECA (MobileNetv3 with Efficient Channel Attention)提高特征提取能力;其次在深度可分离卷积层增加1×1的卷积,在减少卷积结构参数的同时提高网络的拟合能力;最后对检测网络进行迭代通道剪枝实现模型压缩和加速。实验选取DIOR (Object Detection in Optical Remote Sensing Images)数据集进行训练和测试,并在嵌入式平台(NVIDIA Jetson Xavier NX)对轻量级模型进行推理验证。结果表明,所提出的轻量级模型大幅降低了参数和计算量,同时具有较高精度,实现了移动端设备/边缘计算的实时航空目标检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号