首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 566 毫秒
1.
A two-stage anaerobic digestion process intended for biohydrogen and bio-methane combined production from organic fraction of municipal solid wastes was investigated. In thermophilic conditions blocking of methanogenesis at the first stage of the anaerobic fermentation was achieved at pH 9.0. Cumulative hydrogen production made 82.5 l/kg volatile solids. Pretreatment of organic fraction of municipal solid wastes and exploitation of mixed cultures of anaerobic thermophilic cellulolytic and saccharolytic bacteria of Clostridia sp resulted in the increase of hydrogen cumulative production up to 104 l/kg volatile solids. Content of methane in biohydrogen didn’t exceed 0.1%. Cumulative bio-methane production made 520 l/kg volatile solids. Methane percentage in produced biogas was 78.6%. Comparison of energy data for two-stage anaerobic digestion with those for solely methane production shows the increase in energy recovery from biodegradable fraction of municipal solid wastes. Results obtained make a foolproof basis for the development of cost-effective technological process providing hydrogen and methane combined production from solid organic wastes. Technology can be implemented at large scale biogas plants improving economical and ecological characteristics of the overall process.  相似文献   

2.
In this study the anaerobic digestion of grain stillage in three different reactor systems (continuous stirred tank reactor, anaerobic sequencing batch reactor, fixed bed reactor) with and without immobilization of microorganisms was investigated to evaluate the performance during increase of the organic loading rate (OLR) from 1 to 10 g of volatile solids (VS) per liter reactor volume and day and decrease of the hydraulic retention time (HRT) from 40 to 6 days. No significant differences have been observed between the performances of the three examined reactor systems. The changes in OLR and HRT caused a reduction of the specific biogas production (SBP) of about 25% from about 650 to 550 L kg−1 of VS but would also diminish the necessary digester volume and investment costs of about 75% compared to the state of the art.  相似文献   

3.
A simple, rapid and eco-friendly procedure was adopted to synthesize iron nano-catalyst (FeNCs) using the leaf extracts of Acalypha indica. The effectiveness of synthesized FeNCs was evaluated for the biogas production from mixed liquor volatile suspended solids (MLVSS). The FeNCs were characterized using UV-Visible spectroscopy, Fourier Transform Infrared spectroscopy, Scanning Electron Microscope and X-Ray Diffraction. The catalytic activity of the synthesized additives of FeNCs during the anaerobic process showed a drastic reduction in the hydraulic retention time of 6days for biogas production 85–90%. This study also showed a significant increase in the total biogas production when MLVSS supplemented with 0.3 g/L FeNCs. The aforementioned additive yielded 0.345 (L/g volatile solids reduced) biogas which is relatively lesser (63%) when compared with the control 0.25 (L/g VS reduced) and their bulk salts 0.055 (L/g VS reduced).  相似文献   

4.
Buffalo grass and alkaline-pretreated buffalo grass samples were co-digested with cow manure separately to generate biogas in anaerobic reactors. The study considered a solid content of 20% (10% buffalo grass and 10% cow manure). The methane (CH4) content and CH4 yield of the distinct experiments were compared. For the untreated buffalo grass, the weighed buffalo grass was mixed with cow manure and water. For the alkaline-pretreated buffalo grass, the weighed buffalo grass was soaked in 1% sodium hydroxide for 1 day prior to being mixed with cow manure and water. The untreated and pretreated buffalo grass-manure were fed semi-continuously at the rate of 125 mL/day for five days feeding in a 5 L reactor, with 40 days hydraulic retention time. The experiments were conducted for approximately 100 days. Results were reported when the systems were in steady-state conditions. The chemical oxygen demand (COD) conversion efficiency of co-digestion of the untreated and pretreated buffalo grass-manure were 46.21 and 62.76%, respectively, and for the total volatile solids (TVS) were 68.50 and 71.80%, respectively. The CH4 contents generated from co-digestion of the untreated and pretreated buffalo grass-manure were 48.32% and 50.36%, respectively. The CH4 yields generated from co-digestion of the untreated and pretreated buffalo grass-manure were 328 and 385 L/kgTVS conversion, respectively. It was observed from the experiments that pretreatment of the buffalo grass prior to co-digestion provided system stability during biogas production.  相似文献   

5.
The degradation and biogas production potential of sisal fibre waste could be significantly increased by pre-treatment for reduction of particle size. Batch-wise anaerobic digestion of sisal fibre waste was carried out in 1-l digesters with fibre sizes ranging from 2 to 100 mm, at an ambient temperature of 33 °C. Sediment from a stabilisation pond at a sisal production plant was used as starter seed. Total fibre degradation increased from 31% to 70% for the 2 mm fibres, compared to untreated sisal fibres. Furthermore, the results confirmed that methane yield was inversely proportional to particle size. Methane yield increased by 23% when the fibres were cut to 2 mm size and was 0.22 m3 CH4/kg volatile solids, compared to 0.18 m3 CH4/kg volatile solids for untreated fibres. By anaerobic digestion and biogas production, the 148,000 tonne of waste sisal fibres generated annually in Tanzania could yield 22 million m3 of methane, and an additional 5 million m3 of methane if pre-treatment by size reduction to 2 mm was applied.  相似文献   

6.
研究了玉米秆和稻壳在固体浓度为6%时的高温(50℃)发酵性能,并分析了发酵过程中氨氮浓度、碱度及挥发性脂肪酸等参数的变化情况。结果表明,玉米秆和稻壳的挥发性物质产甲烷率接近,分别为(157.67 ± 3.00)mL/g VS和(155.83 ± 6.25)mL/g VS,挥发性物质去除率分别为(53.38 ± 0.81)% 和(42.67 ± 0.3)%。但稻壳相比于玉米秆无需粉碎,降低了输入能耗。发酵过程中氨氮浓度及挥发性脂肪酸数值低于抑制浓度,且碱度对发酵系统酸浓度变化具有很好的缓冲能力,可见玉米秆和稻壳适宜作为沼气工程的原料,并可在6%的固体浓度及高温条件下稳定发酵。  相似文献   

7.
Batch tests were carried out to investigate the bioelectrochemical enhancement of hydrogen and methane production from the anaerobic digestion of sewage sludge in single-chamber membrane-free microbial electrolysis cells (MEC) and non-MECs. Hydrogen and methane were produced from the anaerobic digestion of sewage sludge in all reactors. Compared with controls, hydrogen production was enhanced 1.7–5.2-fold, and methane production 11.4–13.6-fold with Ti/Ru electrodes at applied voltages of 1.4 and 1.8 V, respectively. Most of hydrogen was produced in the first 5 days of digestion and most of methane was generated after 5 days. No oxygen was detected in the biogas and no hydrogen production was detected in the control test with water. The applied voltages can enhance the removal of suspended and volatile suspended solids, increase the transformation of soluble chemical oxygen demand, accelerate the conversion of volatile fatty acids and maintain an optimal pH range for methanogen growth.  相似文献   

8.
Blue mussels and reeds were explored as a new biomass type in the Kalmar County of Sweden to improve renewable transport fuel production in the form of biogas. Anaerobic digestion of blue mussels and reeds was performed at a laboratory-scale to evaluate biogas production in a two-stage dry digestion system. The two-stage system consisted of a leach bed reactor and an upflow anaerobic sludge blanket (UASB) reactor. The two-stage system was efficient for the digestion of blue mussels, including shells, and a methane yield of 0.33 m3/kg volatile solids (VS) was obtained. The meat fraction of blue mussels was easily solubilised in the leach bed reactor and the soluble organic materials were rapidly converted in the UASB reactor from which 68% of the methane was produced. However, the digestion of mussels including shells gave low production capacity, which may result in a less economically viable biogas process. A low methane potential, 0.22 m3/kg VS, was obtained in the anaerobic two-stage digestion of reeds after 107 days; however, it was comparable to similar types of biomass, such as straw. About 80% of the methane was produced in the leach bed reactor. Hence, only a leach bed reactor (dry digestion) may be needed to digest reed. The two-stage anaerobic digestion of blue mussels and reeds resulted in an energy potential of 16.6 and 10.7 GWh/year, respectively, from the estimated harvest amounts. Two-stage anaerobic digestion of new organic materials such as blue mussels and reeds can be a promising biomass resource as land-based biomass start to be limited and conflict with food resources can be avoided.  相似文献   

9.
In this paper are presented the results of the investigation on optimal process operational conditions of thermophilic dark fermentation and anaerobic digestion of food waste, testing a long-term run, applying an organic loading rate of 16.3 kgTVS/m3d in the first phase and 4.8 kgTVS/m3d in the second phase. The hydraulic retention times (HRTs) were maintained at 3.3 days and 12.6 days, respectively, for the first and second phase. Recirculation of anaerobic digested sludge, after a mild solid separation, was applied to the dark fermentation reactor in order to control the pH in the optimal hydrogen production range of 5–6. It was confirmed the possibility to obtain a stable hydrogen production, without using external chemicals for pH control, in a long-term test, with a specific hydrogen production of 66.7 l per kg of total volatile solid (TVS) fed and a specific biogas production in the second phase of 0.72 m3 per kgTVS fed; the produced biogas presented a typical composition with a stable presence of hydrogen and methane in the biogas mixture around 6 and 58%, respectively, carbon dioxide being the rest.  相似文献   

10.
Hydraulic retention time (HRT) determination in the anaerobic digestion process is an important factor for reactor design. This study aims to investigate the optimal HRT determination method for beef manure and sawdust mixture in the anaerobic digestion (AD). The Piecewise linear regression (PLR) analysis method was applied to compare the HRT with MGTP95 determined by the Modified Gompertz model analysis, cumulative methane yield (Cum.CH4), cumulative biomass removal (Cum.BMR) and biodegraded volatile solids (PLTBVS). Lab-scale (6 cases of lab-scale in the anaerobic digestion) experiments were performed and analyzed by Modified Gompertz model and Piecewise linear regression analysis. The parameters selected for Piecewise linear regression analysis: Cumulative methane yield (PLTCUM.CH4), cumulative biomass removal (PLTCUM.BMR), biodegradable volatile solids (PLTBVS) and time to produce 95% of methane yield potential from Modified Gompertz model (MGTP95). The HRT determined from PLTCum.CH4 varied in between 26.4~34.9 days, and which were 0.4~3.9 days, 8.3~16.0 days, and 9.4~22.2 days shorter than PLTCum.BMR, MGTP95, and PLTBVS, respectively. The daily maximum methane yield rate in the HRT from PLTCum.CH4 showing the highest daily methane yields rate which was less than 2.1%. Therefore, reactor utilization rate and organic loading rate for PLTCum. BMR, MGTP95, and PLTBVS were 94.4~99.4%, 78.0~84.4%, and 70.9~83.9%, respectively, lower than PLTCum.CH4. Conclusively, the HRT from PLTCum.CH4 is the most appropriate method to maximize the organic loading rate relative to other determination methods.  相似文献   

11.
城市有机垃圾厌氧干发酵研究   总被引:14,自引:0,他引:14  
在20-50% TS浓度下,采用厌氧消化污泥作接种物,TS量与接种物量之比为10:1,可保证有机垃圾厌氧消化过程正常进行。这时垃圾的生物降解量、产沼气量和产甲烷量均随TS浓度的增高而降低,TS浓度为50%时降低幅度最大。产甲烷过程,挥发酸量和每克TS和VS的产气量均与TS浓度有关。  相似文献   

12.
Smooth cordgrass (Spartina alterniflora), a saltmarsh plant with high production, was characterized for its potential for use as feedstock for anaerobic digestion processes. The anaerobic digestibility and biogas yield of S. alterniflora were evaluated by anaerobic batch digestion experiments performed at 35 ± 1 °C at initial volatile solids (VS) of 6%. The nutrient content analysis indicated that S. alterniflora contained the required nutrition for anaerobic microorganisms, but its high C/N of 58.8, high K and Na contents of 8.1, 22.7 g kg?1, respectively, may be disadvantageous to its anaerobic digestion. The cumulative biogas yield was determined to be 358 L kg?1 VS and the biodegradation efficiency was 45% after 60 days of digestion. The methane content of biogas increased from 53% on day 3 to around 62% after 13 days of digestion. The changes of volatile fatty acids (VFAs) indicated that the acidification of S. alterniflora was propionate-type fermentation with proportion of acetate and propionate ranging from 54.8% to 98.4%, and the hydrolysis of lignocellulose was the rate-limiting step for its anaerobic digestion. The analysis of cations suggested that K+ and Mg2+, with the maximum concentration of 1.35 and 0.43 g L?1 in fermentation liquor, respectively, could be inhibitory to the anaerobic digestion of S. alterniflora. It is concluded that S. alterniflora can be transformed into clean energy by anaerobic digestion and the high contents of K, Na, Ca and Mg may be the inhibitory factors when S. alterniflora is digested by continuous or semi-continuous anaerobic process.  相似文献   

13.
The biogas production potential of different mixtures of cow manure (CM) and three-phase olive mill solid waste (3POMSW) at 37°C was evaluated. Results showed that 3POMSW produced more methane yield than CM. In the anaerobic co-digestion (AcoD) methane yield increased with increasing of 3POMSW content, the maximum methane yield was observed at 3POMSW:CM ratio of 3:1. Addition of an enzyme mixture (Celluclast, Pulpzyme HC, Sherazyme, Novozym 342, and Resinase A 2X) to the 1:1 mixture increased the quantity and quality of biogas production and reduced the retention time required to achieve a high rate of biodegradation. Therefore, AcoD with enzymes was an effective way to improve the methane yield of 3POMSW and CM.  相似文献   

14.
有机垃圾组分中温厌氧消化产甲烷动力学研究   总被引:8,自引:0,他引:8  
以土豆、生菜、瘦肉和花生油为原料,采用批式中温厌氧消化产甲烷实验,研究了城市生活有机垃圾中淀粉类、纤维素类、蛋白质类和脂类4种典型组分的厌氧消化产甲烷特性。利用修正Gompertz方程对累积产甲烷量进行拟合,并对厌氧降解过程用一级动力学进行分析。结果表明:土豆、生菜、瘦肉和花生油的最终甲烷产量为260.1、145.7、258.4和757.2mL·gVS~(-1),延滞期分别为0、1.3、1.6和13.1d,累积甲烷产量达到最终甲烷产量80%所需的时间分别为7.2、9.6、8.1和59.7d,可生物降解度分别为74%、31%、51%和85%。从厌氧消化过程中液相的挥发性脂肪酸浓度和气相的氢气浓度以及pH监测结果表明,所有厌氧消化过程均没有中间产物的积累,适合一级动力学方程。土豆、生菜、瘦肉和花生油的厌氧降解速率常数分别为0.183、0.147、0.190和0.020d~(-1)。  相似文献   

15.
The effectiveness of using cow dung as a source for isolating hydrogen generating microflora was investigated under varying isolating conditions based on viz.: pH adjustment and pH adjustment coupled with heat treatment. The viability of the isolated microflora was tested in an anaerobic jar with respect to biogas generation, hydrogen content and pH. The results showed that for pH adjusted microflora isolated from cow dung with solids content at 10% resulted in a cumulative biogas generation of 1494, 2404 and 3327 ml, whereas the corresponding cumulative hydrogen generation was found to be 424, 701 and 47 ml during the anaerobic fermentation for 120 h at a pH of 4, 5 and 6, respectively. The biogas was free from methane when operated at pH 4 and 5, whereas at pH 6 methane generation was observed. In the case of microflora isolated from cow dung with 10% solids, by subjecting to pH adjustment coupled with heat treatment resulted in biogas free from methane content during the fermentation at pH 4, 5 and 6, respectively. At the end of 120 h of fermentation for a reactor pH at 4, 5 and 6 the cumulative biogas generation was 1685, 2610 and 2353 ml, whereas the cumulative hydrogen generation was 509, 1198 and 1165 ml, respectively. A maximum of 41% and 62% hydrogen was obtained at pH 5 for microflora isolated based on pH adjustment and pH adjustment coupled with heat treatment. The effect of initial solids content of the cow dung on the isolating efficiency of hydrogen generating microflora was also investigated at pH 5 and 6 coupled with heat treatment. The results revealed that with the increase in initial solids content of the cow dung the optimum heat treatment period also increased as the pH increased from 5 to 6.  相似文献   

16.
This study involves continuous co-digestion of swine manure and pineapple waste mixture using two-stage anaerobic reactors and examines hydraulic retention time (HRT) and substrate heat pre-treatment. The maximum hydrogen and methane production rates of 1488.62 and 991.57 mL/L/d, respectively, reached optimal HRTs of 4.5 h in the hydrogen production fermenter (HPF) and 9 d in the methane production fermenter (MPF) using heat pre-treatment. Acetic acid is a dominant volatile fatty acid of the soluble metabolites with values 70%–73% under all the tested conditions and increased values under heat pre-treatment and high HRT. Firmicutes and Euryarchaeota are the main bacteria species detected in HPF and MPF, respectively. The optimal total energy of 196.47 kJ/L/d and chemical oxygen demand (COD) removal efficiency of 90% were obtained by a complete anaerobic co-digestion process at a high substrate concentration of 105 g COD/L and low HRT of 4.5 h. This shows that the two-stage co-digestion process could increase the COD removal efficiency, hydrogen production rate, and net energy gains and produce high quality biogas and significantly reduce fermentation time.  相似文献   

17.
This study evaluates the influence of metal and metal-oxide nanoparticles (NPs) on biogas production from green microalgae Enteromorpha. The concentration of metallic NPs (Ni, Co) was 1 mg/L and oxides NPs (Fe3O4, MgO) was 10 mg/L. An anaerobic digestion was carried out batch-wise with working volume, operating temperature, mixing rate and hydraulic retention time as 500 ml, 37 °C, 150 rpm and 170 h, respectively. The measurements of chemical oxygen demand (COD), volatile fatty acids (VFAs), reducing sugar and biogas production were observed to monitor effectivity of nanoparticles. The results showed that NPs has moderate positive influence in biogas production until 60 h of retention time but significantly improve afterward. The maximum total biogas yield of 624 ml was achieved by Fe3O4 NPs whereas highest biohydrogen, 51.42% (v/v) was achieved by Ni NPs. The cumulative increase in biogas production for Fe3O4, Ni, Co and MgO NPs was 28%, 26%, 9% and 8%, respectively. A modified Gompertz and Logistic function model were used to determine kinetic constants of the reaction. The logistic model has the better predicting ability for microalgae anaerobic digestion.  相似文献   

18.
The marine algae are considered an important biomass source; however, their utilization as energy source is still low around the world. The technical feasibility of marine algae utilization as a source of renewable energy was studied to laboratory scale. The anaerobic digestion of Macrocystis pyrifera, Durvillea antarctica and their blend 1:1 (w/w) was evaluated in a two-phase anaerobic digestion system, which consisted of an anaerobic sequencing batch reactor (ASBR) and an upflow anaerobic filter (UAF). The results show that 70% of the total biogas produced in the system was generated in the UAF, and both algae species have similar biogas productions of 180.4(±1.5) mL g−1 dry algae d−1, with a methane concentration around 65%. The same methane content was observed in biogas yield of algae blend; however, a lower biogas yield was obtained. In conclusion, either algae species or their blend can be utilized to produce methane gas in a two-phase digestion system.  相似文献   

19.
厌氧消化处理餐厨垃圾的工艺研究   总被引:18,自引:0,他引:18  
在分析餐厨垃圾的性质和现有处理技术基础上,着重分析了湿式厌氧发酵工艺处理餐厨垃圾的适应性和特点,并根据餐厨垃圾的组成特性和湿式厌氧发酵反应的要求.研究了适用于餐厨垃圾的湿式厌氧发酵工艺,该工艺通过对原料处理罐(备料罐)和发酵反应器的精心设计,保证了发酵反应的顺利进行和发酵后腐熟质的质量,实验室试验表明产气率可达0.520m^3/kg.VS。  相似文献   

20.
Optimization of biogas production from wheat straw stillage in UASB reactor   总被引:1,自引:0,他引:1  
In the present study, thermophilic anaerobic digestion of wheat straw stillage was investigated. Methane potential of stillage was determined in batch experiments at two different substrate concentrations. Results showed that higher methane yields of 324 ml/g-(volatile solids) VSadded were obtained at stillage concentrations of 12.8 g-VS/L than at 25.6 g-VS/l. Continuous anaerobic digestion of stillage was performed in an up-flow anaerobic sludge blanket (UASB) reactor at 55 °C with 2 days hydraulic retention time. Results showed that both substrate concentration and organic loading rate (OLR) influenced process performance and methane yields. Maximum methane yield of 155 ml CH4/g-COD was obtained at stillage mixtures with water of 25% (v/v) in the feed and at an OLR of 17.1 g-COD/(l.d). Soluble chemical oxygen demand (SCOD) removal at this OLR was 76% (w/w). Increase in OLR to 41.2 g-COD/(l.d) and/or stillage concentration in the feed to 33–50% (v/v) resulted in low methane yields or complete process failure. The results showed that thermophilic anaerobic digestion of wheat straw stillage alone for methane production is feasible in UASB reactor at an OLR of 17.1 g-COD/(l.d) and at substrate concentration of 25% in the feed. The produced methane could improve the process energy and economics of a bioethanol plant and also enable to utilize the stillage in a sustainable manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号