首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most quantitative studies of flow dynamics in eruptive conduits during volcanic eruptions use a simplified energy equation that ignores either temperature changes, or the thermal effects of gas exsolution. In this paper we assess the effects of those simplifications by analyzing the influence of equilibrium gas exsolution and expansion on final temperatures, velocities, and liquid viscosities of magma-gas mixtures during adiabatic decompression. For a given initial pressure (p1), temperature (T1) and melt composition, the final temperature (Tf) and velocity (umax) will vary depending on the degree to which friction and other irreversible processes reduce mechanical energy within the conduit. The final conditions range between two thermodynamic end members: (1) constant enthalpy (dh=0), in which Tf is maximal and no energy goes into lifting or acceleration; and (2) constant entropy (ds=0), in which Tf is minimal and maximum energy goes into lifting and acceleration. For ds=0, T1=900 °C and p1=200 MPa, a water-saturated albitic melt cools by ~200 °C during decompression, but only about 250 °C of this temperature decrease can be attributed to the energy of gas exsolution per se: the remainder results from expansion of gas that has already exsolved. For the same T1 and p1, and dh=0, Tf is 10-15 °C hotter than T1 but is about 10-25 °C cooler than Tf in similar calculations that ignore the energy of gas exsolution. For ds=0, p1=200 MPa and T1=9,000 °C, assuming that all the enthalpy change of decompression goes into kinetic energy, a water-saturated albitic mixture can theoretically accelerate to ~800 m/s. Similar calculations that ignore gas exsolution (but take into account gas expansion) give velocities about 10-15% higher. For the same T1, pI=200 MPa, and ds=0, the cooling associated with gas expansion and exsolution increases final melt viscosity more than 2.5 orders of magnitude. For dh=0, isenthalpic heating decreases final melt viscosity by about 0.7 orders of magnitude. Thermal effects of gas exsolution are responsible for less than 10% of these viscosity changes. Isenthalpic heating could significantly reduce flow resistance in eruptive conduits if heat generation were concentrated along conduit walls, where shearing is greatest. Isentropic cooling could enhance clast fragmentation in near-surface vents in cases where extremely rapid pressure drops reduce gas temperatures and chill the margins of expanding pyroclasts.  相似文献   

2.
Tourmaline has been synthesized hydrothermally at 200 MPa between 300 and 700 °C from oxide mixtures with Mg-Al ratios for the end members dravite NaMg3Al6(Si6O18)(BO3)3(OH)3(OH) and Mg-foitite &ding6F;(Mg2Al)Al6 (Si6O18)(BO3)3(OH)3(OH). Six different Na concentrations were investigated to determine the distribution of Na between tourmaline and fluid in the SiO2-saturated system Na2O-MgO-Al2O3-SiO2-B2O3-H2O-HCl. Synthetic tourmaline ranges from X-site vacant (&ding6F;) tourmaline (Mg-foitite) to nearly ideal dravite with Na=0.95 apfu. There are small, but significant, amounts of proton deficiency and negligible tetrahedral Al. Chemical variation is primarily caused by the substitutions Al&ding6F;Mg-1Na-1 and minor AlMg-1H-1. Varying amounts of Na and &ding6F; determine the Mg/Al ratios. Besides tourmaline and quartz, additional Mg-Al phases are chlorite and, at 700 °C, cordierite. Albite is also present at high Na concentrations in the bulk composition. The c dimension of the tourmaline crystals increases with Na in tourmaline. The amount of Na in the X-site depends strongly on the bulk concentration of Na in the system as well as on the temperature. These factors in turn control the phase assemblage and the composition of the fluid phase. For the assemblage tourmaline + quartz + chlorite/cordierite + fluid, a linear relationship exists between Na concentration in the fluid (quenched after the run) and tourmaline with temperature: T °C [ᆭ °C]=(Nafluid/Natur)앾.878-14.692 (r2=0.96). For the assemblage tourmaline + albite + quartz + fluid, it is: T °C [ᆣ °C]=(Nafluid/Natur)욝.813-6.231 (r2=0.95), where Nafluid is the concentration of Na+ in the final fluid (mol/l) and Natur is the number of Na cations in the X-site of tourmaline. The equations are valid in the temperature range of 500-715 °C. Our experiments demonstrate that the occupancy of the X-site in combination with the changing concentrations of Al and Mg can be used to monitor changes in the fluid composition in equilibrium with a growing tourmaline crystal. Currently, this relation can be applied qualitatively to natural tourmaline to explain zoning in Na- and Al/(Al+Mg).  相似文献   

3.
Idioblastic spessartine garnet pervasively developed in Mn-rich rocks and impure manganese carbonate ore at the Lower Proterozoic Nsuta manganese deposit, Western Ghana, contains abundant inclusions of micritic and microconcretionary carbonates and, to a lesser extent, quartz. Detailed mineralogical and microprobe studies indicate all the carbonate phases (i.e. carbonate inclusions in garnet, carbonates coexisting with garnet and carbonates not directly in contact with garnet, the latter hereafter referred to as matrix carbonates) lie within the rhodochrosite-kutnahorite solid solution series, i.e. ~Mn55-80(Ca + Mg)20-45CO3 to Ca42(Mn + Mg)58(CO3)2. Minor compositional differences occur in the various carbonate phases, but partition of major elements among coexisting phases indicate most carbonate minerals strongly fractionate Ca and Mg over coexisting spessartine. The nature, composition and textural relationship of coexisting minerals and inclusions in porphyroblastic spessartine indicate that the latter formed from metamorphic reactions in which rhodochrosite and/or kutnahorite and quartz were consumed, in part corroborating earlier observations on a rhodochrosite precursor for spessartine. Spessartine formation is thus envisaged to have taken place when the predominantly Mn carbonate-quartz assemblage became unstable in the presence of minor amounts of an unknown aluminous phase. Because all the carbonates appear to be low-temperature phases with no indications of significant recrystallisation or homogenisation, it could be argued that the spessartine + rhodochrosite - kutnahorite - quartz - pyrite assemblage stabilised during very low-grade greenschist facies metamorphism under relatively low but uniform fO2 conditions. These observations also suggest the stability field of spessartine could extend to relatively lower temperatures than currently envisaged.  相似文献   

4.
Iron and manganese redox cycling in the sediment — water interface region in the Kalix River estuary was investigated by using sediment trap data, pore-water and solid-phase sediment data. Nondetrital phases (presumably reactive Fe and Mn oxides) form substantial fractions of the total settling flux of Fe and Mn (51% of Fetotal and 84% of Mntotal). A steady-state box model reveals that nondetrital Fe and Mn differ considerably in reactivity during post-depositional redox cycling in the sediment. The production rate of dissolved Mn (1.6 mmol m–2 d–1) exceeded the depositional flux of nondetrital Mn (0.27 mmol m–2 d–1) by a factor of about 6. In contrast, the production rate of upwardly diffusing pore-water Fe (0.77 mmol m–2 d–1) amounted to only 22% of the depositional flux of nondetrital Fe (3.5 mmol m–2 d–1). Upwardly diffusing pore-water Fe and Mn are effectively oxidized and trapped in the oxic surface layer of the sediment, resulting in negligible benthic effluxes of Fe and Mn. Consequently, the concentrations of nondetrital Fe and Mn in permanently deposited, anoxic sediment are similar to those in the settling material. Reactive Fe oxides appear to form a substantial fraction of this buried, non-detrital Fe. The in-situ oxidation rates of Fe and Mn are tentatively estimated to be 0.51 and 0.16–1.7 mol cm–3 d–1, respectively.  相似文献   

5.
Benthic carbon isotope data indicate that the rate of North Atlantic Deep Water (NADW) formation and the mode of oceanic thermohaline circulation (THC) varied considerably across the transition from the Last Glacial Maximum (LGM) to the Heinrich 1 meltwater event (MWE) and, subsequently, to the Bølling warm period. We simulate changes in the Ocean-atmosphere carbon cycle induced by and linked to these oceanic fluctuations by means of a carbon cycle box model which resolves the major oceanic basins. The output from an ocean general circulation model (OGCM), which is forced by observed or reconstructed boundary conditions at its surface, serves to constrain the physical parameters of the carbon cycle model. The OGCM depicts three modes of Atlantic THC: an interglacial mode with vigorous NADW formation; a glacial mode with active, although weaker (-65%) NADW formation; and an MWE mode characterized by the complete lack of NADW formation. The carbon cycle model is forced from the LGM scenario into the MWE and finally into the Bølling interstadial. The glacial circulation mode accounts for approximately half (i.e., 37Dž µatm, depending on parameterization of biological productivity) of the observed glacial reduction in atmospheric CO2 partial pressure (pCO2). Approximately 70% of this pCO2 decline is linked to changes in sea-surface temperature and salinity. The MWE circulation mode has only a small effect on atmospheric pCO2 (ǃ µatm) but goes along with a massive redistribution of carbon from the Indo-Pacific and Southern oceans to the Atlantic Ocean, which stores 85NJ Gt (gigatons) excess carbon during the MWE. The onset of NADW formation after a meltwater event, has the potential to release 81Lj Gt carbon from the model ocean to the atmosphere, corresponding to an atmospheric pCO2 increase by 38Dž µatm, equivalent to approximately half of the modern, man-made pCO2 load.  相似文献   

6.
Magnetic properties, free and active Fe oxides, grain size distribution and mineral assemblage of a Quaternary loess–Tertiary red clay (TRC) section in Lingtai County in the Chinese Loess Plateau were studied. The results suggest that the TRC of the Lingtai section shares similar aeolian characteristics with the overlying Quaternary loess-paleosol sequence (QLPS), but the former is generally more intensively weathered than the latter, as indicated by its higher citrate–bicarbonate–dithionite (CBD) extractable Fe (Fed), finer grain size and lower content of easily weathered primary minerals. However, magnetic susceptibility (χlf) and magnetic remanence (χarm, SIRM and SOFT etc.) of the main part of the TRC are significantly lower, implying the decline of ferrimagnetic minerals (FM). In contrast, hematite and goethite in the TRC is significantly enhanced, as indicated by its higher HIRM. The acid ammonium oxalate (AAO) extractable Fe (Feo) of the whole section sharply decreases with increasing age. Feo and Feo/Fed values of the section are significantly correlated with χlf. Especially in the TRC, the low values of Feo and Feo/Fed correspond to weak χlf. This suggests a significant influence of the age-related transformation of Fe oxides on the decline of FM in the TRC. Lower FM and higher hematite and/or goethite in the TRC further suggest the transformation of FM into hematite with the aging of Fe oxides during post-depositional processes, though more evidence is needed to understand the processes involved. χlf of the TRC in the Chinese Loess Plateau mostly cannot be regarded as a promising paleoclimatic proxy because its weak magnetism does not correlate to its strong pedogenesis.  相似文献   

7.
Fe-nodules occur within saprolites formed from weathering of granodioritic gneisses in the rain-shadow region of the Mysore Plateau adjacent to the Sahyadri Mountains in Southern India. These nodules and their host saprolites were studied for their geochemistry, including chemical speciation, to understand nodule formation and chemical redistribution processes during rock weathering. From their mode of occurrence, and mineralogical and geochemical data, we infer that the nodules originated by a two-stage process in which the initial extensive weathering of gneisses likely facilitated subsequent ferrolysis weathering and nodule formation. Nodules originated by precipitation of goethite, hematite and gibbsite along with several amorphous phases within the matrix of weathered gneisses. This is possible only under hydromorphic conditions, suggesting that parts of the plateau must have gone through a humid phase prior to the present aridity. In the saprolites, Al, Fe, and Ti become enriched because of the removal of Si, Ca, Na, and K. However within the nodule, Fe, Ti, Cr, and Ni are deposited after their chemical transport from the saprolite. Titanium, known for its immobile nature, was also mobilized and concentrated under the conditions of nodule formation. The most important elements in the nodule constitution are Fe, Al, Ti, and Mn, each having both crystalline and amorphous phases. Fe-Ti and Mn oxyhydroxides grain coatings in the saprolites and discrete amorphous Mn and Ti phases in the nodules seem to have scavenged trace elements from the weathering profile. REE were mobilized during weathering and nodule genesis in which Ce and Ti show a strong geochemical coherence. The enrichment of only HREE in saprolite, and both HREE and LREE with significant Ce in the nodule, indicate the control of evolving secondary minerals in the REE redistribution during rock weathering. Strong enrichment of Ce in the weathering profile and in nodules has important implications to the REE chemistry of river waters.  相似文献   

8.
The strong negative correlation between the temperatures and melt H2O contents of granitoid magmas implies that the crustal melting reactions that produced the magmas were strongly buffered, with T and aH2O co-varying within a narrow band. This observation can only be explained if the partial melting reactions that created the magmas were either fluid-absent from the outset or evolved toward this condition as melting progressed. Since these melting reactions occur during upper amphibolite- to granulite-facies metamorphism, it is reasonable to conclude that metamorphic events responsible for the generation of granitoid magmas generally occur in the absence of excess pervasive fluid.  相似文献   

9.
Ten highly weathered soils in southeastern Nigeria were sampled from their typical A and B horizons for analyses. The objectives were to determine the different forms of Fe and Al oxides in the soils and relating their occurrence to phosphate availability and retention in the soils. The soils are deep and often physically degraded but are well drained and coarse in the particle size distribution. They are mostly dominated by kaolinite in their mineralogy with very high values of SiO2. The soils are acidic with low soil organic carbon (SOC) contents. The elements in the exchange complex are also low thus reflecting in the low CEC of the soil. Available phosphorus (P) in the soils are generally low while total P ranged from 157 to 982 mg kg−1 with an overall average of 422 mg kg−1. Total Fe in the soil is highest and their order represented as follows: Fet > Fed > Feox ≥ Fep. The pyrophosphate extractable Fe was always higher in the top soil than in the subsoil and was attributed to the fact that these forms of Fe are associated with organic matter which is more abundant in topsoil than in subsoil. Like in Fe forms, the order of Al occurrence could generally be presented as; Alt > Ald > Alox > Alp. More Fe and Al oxides in the soils are strongly crystalline while a small quantity is poorly crystalline Fe forms. The amorphous forms of both Fe and Al are very low in the soils when compared with the crystalline forms. The oxides that show very strong affinity to total P are Fed–Feox, Fed, Ald, Fet, Feox and Alox/Ald. To overcome this problem of P retention in the soil, we recommend constant liming of these soils to neutralize them, application of organic matter and of high dosage of phosphate fertilizer to the soils.  相似文献   

10.
Electron microprobe analyses are presented for new-formed mineralsfrom a small exposure of semi-schistose Taveyanne Formationof the pumpellyite-actinolite facies near Lo?che, Valais. Comparisonsare drawn with minerals of other low-grade metamorphic areas,especially in southern New Zealand. Sphene shows considerablesubstitution of Ca(Al,Fe)SiO4(OH) for CaTiSiO5. Epidotes aresharply divided into early pistacitic (Ps = 0.28–0.37)and later clinozoisitic varieties (Ps = 0.11–0.19). Pumpellyitesrange from pumpellyite-(Fe) to pumpellyite-(Al) and are generallyless Fe-rich than those of zeolite and prehnite-pumpellyitefacies. Pumpellyite inclusions in albitized plagioclase areparticularly low in Mg. Actinolites are low in A12O3, TiO2,and Na2O, essentially identical compositions being nucleatedon detrital augite, hornblende, and in the matrix. Phengitesare also extremely low in Na2O and TiO2. Chlorites are ripidolites.Albitized clastic plagioclase has the composition An0.7–1.6and albite in clinozoisite-calcite-albite-phengite-chloriteveins An2.1–2.3. Calcites carry minor Mn > Fe ? Mg.New-formed iron oxides are absent, whereas pyrrhotite and minorpyrite occur in one rock, buffering fs2 and indicating low fo2. Ratios Mg: Fe* (Fe* = total Fe) in coexisting chlorites andA1, Na-poor actinolites vary sympathetically both in the Lo?cheand southern New Zealand rocks here considered, giving KD =(Mg/Fe*) actlnolIte/(Mg/Fe*)chlorle = 1.72. Mg/Fe* ratios inpumpellyites tend to vary sympathetically with those of coexistingchlorites and actinolites but are more variable. Substitutionof (Fe, Mg)Si for A12 in phengitic micas and chlorites variessympathetically in the same suites between mafic volcanic andmore pelitic extremes. Various minor elements also behave ina consistent fashion, indicating an encouraging tendency towardsequilibrium. Variable (though small) A12O3 contents of actinolite,Fe: Al ratios in epidotes and pumpellyites, and Mg: Fe* ratiosin phengites, even within a single grain, are evidence of short-rangedisequilibrium; metamorphic equilibration is evidently easierbetween some crystal structures and structural sites than betweenothers. In phase rule analysis of assemblages in such rocks it is commonlynecessary to treat Fe2O3, FeO, and MgO as separate componentsand it may also be necessary to regard CO2 as an inert componentand/or to interpret observed assemblages as of low variance.The presence of the Ca-Al silicates and sphene indicates verylow Xco2 in the metamorphic fluids in all rocks examined exceptan albite-chlorite-calcite-quartz-anatase assemblage. But higherAn in albites than in isofacial and in greenschist facies rocksof southern New Zealand can be ascribed to significantly higherXco2 at Lo?che, especially in the veins, than in New Zealand. Pumpellyite and epidotes of the pumpellyite-actinolite faciestend to be lower in Fe and richer in Al than those of lowergrade facies. Important reactions include those of the formpumpellyite-(Fe3+)+chlorite+quartz+H2=pumpellyite-(Al)+actinolite,and pumpellyite+chlorite+quartz- ‘epidote’+actinolite+water.Careful selection of pumpellyite and chlorite compositions isrequired for experimental and chemographic analysis of pumpellyitestability. In the absence of critical data, temperatures ofabout 250–350? and pressures of several kilobars are provisionallysuggested for the Lo?che metamorphism.  相似文献   

11.
KLEIN  CORNELIS  JR. 《Journal of Petrology》1966,7(2):246-305
The Wabush Iron Formation, of late Precambrian (Proterozoic)age is part of the Labrador Trough in southwestern Labrador,Canada. It is the regionally metamorphosed equivalent of lowgrade metamorphic (chlorite zone) iron-rich sediments of thecentral part of the Labrador Trough. The metamorphic grade iskyanite-staurolite zone, as concluded from conformably underlyingpelitic schist assemblages. Sedimentary textural features suchas very pronounced banding and a very rare occurrence of relicgranules are still preserved. The iron formation consists mainly of quartz, specularite, magnetite,cummingtonite-grunerite, and ferrodolomite-ankerite. Less commonare actinolite, anthophyllite, riebeckitetremolite, magnesioriebeckite,ferrosalite, orthopyroxene, aegirine-augite, aegirine, rhodonite,garnet (almandine, spessartine, calderite), siderite, rhodochrosite,calcite, and kutnahorite. Conventional wet chemical analyses or electron microprobe analyseshave been made of thirty-four phases belonging to the abovelist. Six additional electron probe analyses have been madeof phases from the underlying pelitic schists. All conventionallyanalyzed phases are characterized by complete optical, unitcell parameter, and density measurments. The analyzed assemblages from the silicate and silicate-carbonateiron formation include grunerite-ferrosalite, grunerite-eulite-siderite,grunerite-actinolite, grunerite-almandine, cummingtonite-spessartine,rhodonite-kutnahorite-calderite, aegirine-augite-riebeckite-tremolite,magnesioriebeckite-cummingtonite-rhodonite, aegirine-augite-rhodonite-rhodo-chrosite,and aegirine-rhodonite-calderite-rhodochrosite. The assemblages are concluded to be equilibrium assemblages.Of the volatile components, O2, CO2, and H2O, O2, is concludedto have behaved as an inert (buffered) component. Variationsin the activity of CO2 are concluded to have existed betweensilicate-oxide and carbonate-oxide members of the iron formation.It is not clear, however, whether CO2 has acted as a perfectlymobile component with strong aco2 gradients throughout the area,or as an inert component in some parts of the area. H2O is consideredto have been perfectly mobile. An increase in Mg/(Mg+Fe) ratioin ferromagnesian silicates is correlated with an increase inthe oxidation state of the assemblage. A similar increase in(Mg+Mn)/(Mg+Mn+Fe) is found in manganoan ferromagnesian silicateswith increasing activity of O2. A number of ferromagnesian silicatescontain large amounts of Na+ and Fe3+ as a result of the verylow Al2O3 content of the iron formation. The P and T conditionsof metamorphism are deduced from experimental studies applicableto the underlying pelitic schists.  相似文献   

12.
Groundwater samples from 33 locations within the Coastal Plain Sands aquifer of Calabar (Nigeria) were collected and analysed for 43 trace elements by means of ICP-MS. The aim of this study is to determine the natural background levels of trace elements as a guide for future pollution monitoring of the aquifer. Secondly, this article focuses on the pollution vulnerability of the coastal plain sand aquifer. Statistical methods have been used to determine the source(s) of these elements. Results show that the area is characterised by four types of groundwater, including: Na-HCO3, Na-HCO3-Cl, Na-Cl and Ca-Na-HCO3-Cl. Secondly, all the elements considered are below normal averages. In addition, the Spearman correlation shows significant correlation especially among the lanthanide group of elements (p<0.0001). Factors analyses indicate mainly two groups of elements. The first group being due to the natural geochemical process (weathering/leaching of the basement lithology; characteristics of the elements) and the second is due to tidal flushing of the estuary. This indicates that the source of the trace element in the aquifer is due to a geogenic process and not anthropogenic. Thus, the present data set will serve as a reference source for pollution monitoring in the area.  相似文献   

13.
Diffusion-controlled growth rates of polycrystalline enstatite reaction rims between forsterite and quartz were determined at 1,000 °C and 1 GPa in presence of traces of water. Iron-free, pure synthetic forsterite with normal oxygen and silicon isotopic compositions and quartz extremely enriched in 18O and 29Si were used as reactants. The relative mobility of 18O and 29Si in reactants and rims were determined by SIMS step scanning. The morphology of the rim shows that enstatite grows by a direct replacement of forsterite. Rim growth is modelled within a mass-conserving reference frame that implies advancement of reaction fronts from the initial forsterite-quartz interface in both directions. The isotopic compositions at the two reaction interfaces are controlled by the partial reactions Mg2SiO4=0.5 Mg2Si2O6+MgO at the forsterite-enstatite, and MgO+SiO2=0.5 Mg2Si2O6 at the enstatite-quartz interface, implying that grain boundary diffusion of MgO is rate-controlling. Isotopic profiles show no silicon exchange across the propagating reaction interfaces. This propagation, controlled by MgO diffusion, is faster than the homogenisation of Si by self-diffusion behind the advancing fronts. From this, and using % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaDa % aaleaacaWGtbGaamyAaiaacYcacaWGfbGaamOBaaqaaiaadAfacaWG % VbGaamiBaaaaaaa!3DD2! DSi,EnVolD_{Si,En}^{Vol} at dry conditions from the literature, results a % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmirayaafa % Waa0baaSqaaiaadofacaWGPbGaaiilaiaadweacaWGUbaabaaaaOGa % eqiTdqgaaa!3CCD! DSi,En dD'_{Si,En}^{} \delta value of 3᎒-24 m3 s-1 at 1,000 °C. The isotopic profiles for oxygen are more complex. They are interpreted as an interplay between the propagation of the interfaces, the homogenisation of the isotope concentrations by grain boundary self-diffusion of O within the rim, and the isotope exchange across the enstatite-quartz interface, which was open to 18O influx from quartz. Because of overlapping diffusion processes, boundary conditions are unstable and D´Ox,En' cannot be quantified. Using measured rim growth rates, the grain boundary diffusivity D´MgO' of MgO in iron-free enstatite is 8᎒-22 m3 s-1 at 1,000 °C and 1 GPa. Experiments with San Carlos olivine (fo92) as reactant reveal lower rates by a factor of about 4. Our results show that isotope tracers in rim growth experiments allow identification of the actual interface reactions, recognition of the rate-controlling component and further calculation of D´' values for specific components.  相似文献   

14.
2p (L 2,3) X-ray absorption spectra are presented for a range of minerals to demonstrate the usefulness of L-edge spectroscopy as a symmetry- and valenceselective probe. 2p XAS provides a sensitive fingerprint of the electronic states of 3 d transition metals and can be applied to phases containing mixtures of such elements. Calculated spectra for 3d n → 2p 5 3d n+1 transitions provide a basis for the interpretation of the measured spectra. Thus, in principle, multiple valence states of a particular 3 d metal can be precisely characterized from a single L-edge spectrum. Examples of vanadium L-edge spectra are presented for a range of minerals; these complex spectra hold information concerning the presence of vanadium in multiple valence states. The Cu L-edge spectrum of sulvanite (Cu3 VS4) indicates the presence of both Cu+ and Cu2+; the V L-edge spectrum of the same sample shows that both V2+ and V5+ are present. Spectral simulations representing mixtures of Fe d 5 and Fe d 6 states are used to quantify Fe3+/Fe in a spinel, a glass, and an amphibole, all of which contain Fe as a major component. To illustrate the sensitivity of 2p XAS in a dilute system, the Fe L-edge spectrum of amethyst (α-SiO2: Fe) has been recorded; this spectrum shows that ~68% of the Fe in amethyst is Fe2+, and ~32% is Fe3+. Although previous studies on amethyst using other spectroscopic methods cite evidence for Fe4+, there is no indication in the L-edge spectrum for Fe4+ in amethyst. Comparison of theoretical and experimental spectra not only allows the valence states of 3 d ions to be recognised, but also provides site-symmetry information and crystal field parameters for each ion site.  相似文献   

15.
Aluminum silicate triple-point occurrences are common in metamorphicrocks of northern New Mexico. The three polymorphs show extensivesolid solution, with Fe and Mn substituting for Al. Mineraltextures, the spatial distribution of phases, and the systematicpartitioning of Fe and Mn indicate that the kyanite-andalusite-sillimaniteassemblages crystallized in equilibrium. The compositions ofminerals in the three-phase assemblage vary across the studyarea, recording regional variations in the pressures and temperaturesof metamorphism. The highest-pressure rocks, exposed at RioMora, contain kyanite at higher elevations and sillimanite atlower elevations. A sub-horizontal isograd separates the twominerals. Kyanite and sillimanite have nearly identical Fe contentwhich varies systematically with XFe2O3 in hematite or ilmenite.Andalusite occurs only along a single manganiferous layer, incrystals rich in MnAlSiO5 and saturated in FeAlSiO5. Triple-pointassemblages can be found wherever the folded manganiferous layercrosses the unfolded kyanite-sillimanite isograd. The TruchasRange, preserving slightly lower pressures of metamorphism,shows kyanite-andalusite-sillimanite in rocks with titaniferoushematite. Andalusite is enriched in Fe relative to kyanite andsillimanite, but no polymorphs contain Mn. Rocks with lowerXFe2O3 in hematite have kyanite and sillimanite without andalusite,whereas rocks with pure hematite contain only andalusite. Theshallowest erosional levels are preserved in the western PicurisRange where the three polymorphs occur as pure minerals in ilmenite-bearingrocks. Hematitic samples contain only andalusite which showsextensive solid solution of both Fe and Mn. The assemblage kyanite-andalusite-sillimanite is not invariant.Iron and manganese both add degrees of freedom. These transitionmetals have stabilized the three-phase assemblage, in apparentchemical equilibrium, across a P-T interval of 500-540 ?C, 3?8-4?6kb in rocks from New Mexico. The saturation level of FeAlSiO5in andalusite does not vary with Mn content but does vary withpressure and temperature. Calculations indicate that a 2-3 kbdecrease in pressure or a 25-50 ?C increase in temperature resultsin a 1 mole per cent increase in XFeAlSiO5 in iron-saturatedandalusite.  相似文献   

16.
Paragenetic types of pyroxenes, selected according to mineralassociations, differ in their average contents of the majorcations. By comparing with the average composition it is seenthat both the Fe/(Mg+Fe) ratio and the Fe+2, Mn, Mg, Fe+3, andCr contents are determined in the main by the composition ofthe host rocks, but the AIz, Aly, Ca, and Na contents in pyroxenesare influenced by the conditions under which the rock was formed.The dependence of the Alz and Aly contents of orthopyroxenesand clinopyroxenes on temperature and pressure is shown withthe help of a new P-T diagram and by comparison with chemicalanalyses of natural pyroxenes. The correlation between the compound cations in pyroxenes isused to test the hypothesis of real isomorphous substitutionsin each paragenetic type of pyroxenes, and to determine rationalmethods of calculating pyroxene analyses into components. The calculated discriminant functions are useful for referring(with 5–10 per cent error) analyses of pyroxenes to oneof a number of paragenetic types, and in particular for distinguishingpyroxenes from magmatic and metamorphosed gabbros, and fromhigh- and low-temperature two-pyroxene granulites.  相似文献   

17.
18.
The Dufek intrusion is a stratiform mafic body, 24,000 to 34,000km2 in area and 8 to 9 km thick, in the Pensacola Mountainsof Antarctica. Textures, structures, magmatic stratigraphy,and chemical variation indicate that layered gabbros and relatedrocks of this body developed by accumulation of crystals thatsettled on the floor of a magma chamber. The major cumulus phasesin the exposed part of the intrusion are plagioclase, pyroxene,and iron-titanium oxides. The base of the Dufek intrusion is not exposed, and both Ca-richand Ca-poor pyroxene coexist as cumulus phases in the lowerexposed rocks. The Ca-rich pyroxenes belong to an augite-ferroaugiteseries (Ca36.4Mg48.7Fe14.9-Ca30.0Mg23.5Fe46.5) that extendsup through the 300 m thick capping granophyre. The Ca-poor pyroxenesbelong to a bronzite-inverted pigeonite series (Ca3.5Mg69.1Fe27.4-Ca11.4Mg34.0Fe54.6)that extends only to about 200 m below the granophyre layer.In addition to the cumulus pyroxenes some rocks contain post-cumulusgreen calcic augite and ferrohypersthene. The compositional change of the cumulus pyroxenes with stratigraphicheight is one of general iron enrichment. Superimposed on thistrend are (1) a 1 km thick section in the lower part of thebody that shows slight to no iron enrichment and (2) a markedreversal in the Fe/(Fe+Mg) ratio about 1 km below the top ofthe body. The variations from the general trend are associatedwith cyclic units and are best explained by convective overturnof the magma. In general, the pyroxene compositional trends are similar tothose of the Skaergaard and Bushveld intrusions. One significantdifference in the Dufek intrusion is the limited iron enrichmentof its Ca-rich pyroxenes, that may relate to a slower decreaseof PO2 during crystallization of the Dufek magma.  相似文献   

19.
Distribution of Ferric Iron in some Upper-Mantle Assemblages   总被引:16,自引:5,他引:11  
The distribution of ferric iron among the phases of upper-mantlerocks, as a function of pressure (P), temperature (T) and bulkcomposition, has been studied using 57Fe Mssbauer spectroscopyto determine the Fe3+/Fe ratios of mineral separates from 35peridotite and pyroxenite samples. The whole-rock Fe3+ complementof a peridotite is typically shared approximately evenly amongthe major anhydrous phases (spinel and/or garnet, orthopyroxeneand clinopyroxene), with the important exception of olivine,which contains negligible Fe3+. Whole-rock Fe3+ contents areindependent of the T and P of equilibration of the rock, butshow a well-defined simple inverse correlation with the degreeof depletion in a basaltic component. Fe3+ in spinel and inboth pyroxenes from the spinel Iherzolite facies shows a positivecorrelation with temperature, presumably owing to the decreasein the modal abundance of spinel. In garnet peridotites, theFe3+ in garnet increases markedly with increasing T and P, whereasthat in clinopyroxene remains approximately constant. The complexnature of the partitioning of Fe3+ between mantle phases resultsin complicated patterns of the activities of the Fe3+ -bearingcomponents, and thus in calculated equilibrium fO2, which showlittle correlation with whole-rock Fe3+ or degree of depletion.Whether Fe3+ is taken into account or ignored in calculatingmineral formulae for geothermobarometry can have major effectson the resulting calculated T and P. For Fe-Mg exchange geothermometers,large errors must occur when applied to samples more oxidizedor reduced than the experimental calibrations, whose fO2 conditionsare largely unknown. Two-pyroxene thermometry is more immuneto this problem, and probably provides the most reliable P—Testimates. Accordingly, the convergence of P—T valuesderived for a given garnet peridotite assemblage may not necessarilybe indicative of mineral equilibrium. The prospects for thecalculation of accurate Fe3+ contents from electron microprobeanalyses by assuming stoichiometry are good for spinel, uncertainfor garnet, and distinctly poor for pyroxenes. KEY WORDS: mantle; oxidation; partitioning; peridotite; thermobarometry *Corresponding author. Present address: School of Earth and Ocean Sciences, University of Victoria, P.O. Box 1700, Victoria, B.C., V8W 2Y2, Canada  相似文献   

20.
Calorimetric and experimental data on AlF-bearing titanite are presented that yield thermodynamic properties of CaAlFSiO4, as well as activity-composition relations of binary titanite CaTiOSiO4-CaAlFSiO4. The heat capacity of synthetic CaAlFSiO4 was measured with differential scanning calorimetry between 170 and 850 K: CP=689.96-0.38647T+2911300T-2-8356.1T-0.5+0.00016179T2 Based on low-temperature heat capacity calculations with lattice vibrational theory (Debye model), the calorimetric entropy of CaAlFSiO4 can be expected to lie between 104.7 and 118.1 J mol-1 K-1. The temperature of the P21/a to A2/a phase change was determined calorimetrically for a titanite with XAl=0.09 (Ttransition=390 K). The decrease of the transition temperature at a rate of about 11 K per mol% CaAlFSiO4 is in good agreement with previous TEM investigations. The displacement of the reaction anorthite + fluorite = CaAlFSiO4 in the presence of CaTiOSiO4 was studied with high P-T experiments. Titanite behaves as a non-ideal, symmetrical solid-solution. The thermodynamic properties of CaAlFSiO4 consistent with a multi-site mixing model are: % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfKttLearuavTnhis1MBaeXatLxBI9gBam % XvP5wqSXMqHnxAJn0BKvguHDwzZbqegm0B1jxALjhiov2Daebbnrfi % fHhDYfgasaacH8srps0lbbf9q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk % 0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9 % Fve9Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaaiWaca % aabaGaeeyrauKaeeOBa4MaeeiDaqNaeeiAaGMaeeyyaeMaeeiBaWMa % eeiCaaNaeeyEaKNaeeiiaaIaee4Ba8MaeeOzayMaeeiiaaIaeeOzay % Maee4Ba8MaeeOCaiNaeeyBa0MaeeyyaeMaeeiDaqNaeeyAaKMaee4B % a8MaeeOBa4MaeeiiaaIaeeikaGIaeeyzauMaeeiBaWMaeeyzauMaee % yBa0MaeeyzauMaeeOBa4MaeeiDaqNaee4CamNaeeykaKIaeeiiaaIa % emizaq2aaSbaaSqaaiabdAgaMbqabaGccqWGibasdaahaaWcbeqaai % abicdaWaaaaOqaaiabg2da9iabgkHiTiabikdaYiabiEda3iabisda % 0iabicdaWiabc6caUiabiIda4iabgglaXkabiodaZiabc6caUiabic % daWiabbccaGiabbUgaRjabbQeakjabb2gaTjabb+gaVjabbYgaSnaa % CaaaleqabaGaeyOeI0IaeGymaedaaaGcbaGaee4uamLaeeiDaqNaee % yyaeMaeeOBa4MaeeizaqMaeeyyaeMaeeOCaiNaeeizaqMaeeiiaaIa % ee4CamNaeeiDaqNaeeyyaeMaeeiDaqNaeeyzauMaeeiiaaIaeeyzau % MaeeOBa4MaeeiDaqNaeeOCaiNaee4Ba8MaeeiCaaNaeeyEaKNaeeii % aaIaee4uam1aaWbaaSqabeaacqqGWaamaaaakeaacqqG9aqpcqqGXa % qmcqqGWaamcqqG0aancqqGUaGlcqqG5aqocqGHXcqScqqGXaqmcqqG % UaGlcqqGXaqmcqqGGaaicqqGkbGscqqGTbqBcqqGVbWBcqqGSbaBda % ahaaWcbeqaaiabgkHiTiabigdaXaaakiabbUealnaaCaaaleqabaGa % eyOeI0IaeGymaedaaaGcbaGaeeyta0KaeeyyaeMaeeOCaiNaee4zaC % MaeeyDauNaeeiBaWMaeeyzauMaee4CamNaeeiiaaIaeeiCaaNaeeyy % aeMaeeOCaiNaeeyyaeMaeeyBa0MaeeyzauMaeeiDaqNaeeyzauMaee % OCaiNaeeiiaaYaamWaaeaacqWGxbWvdaWgaaWcbaGaemisaG0aaWba % aWqabeaacqGHsislaaaaleqaaOGaeeivaqLaem4vaC1aaSbaaSqaai % abdohaZbqabaaakiaawUfacaGLDbaaaeaacqGH9aqpcqaIXaqmcqaI % ZaWmcqGGUaGlcqaI2aGncqGHXcqScqaIWaamcqGGUaGlcqaI0aanca % aMe8UaeeOsaOKaeeyBa0Maee4Ba8MaeeiBaW2aaWbaaSqabeaacqGH % sislcqaIXaqmaaaaaaaa!E403!
Enthalpy of formation (elements) df H0
amp; = - 2740.8 ±3.0kJmol - 1
Standard state entropy S0
amp; = 104.9 ±1.1 Jmol - 1 K - 1
WV) was determined from the excess volume of mixing based on XRD measurements (214ᆦ J mol-1 kbar-1), as well as refined from the piston-cylinder experimental results (198뀺 J mol-1 kbar-1), demonstrating consistency between crystal structure data and thermodynamic properties. The stability of AlF-bearing titanite Ca(Ti,Al)(O,F)SiO4 was investigated by thermodynamic modelling in the system Ca-Al-Si-Ti-O-F-H-C and subsystems. The petrogenetic grids are in good agreement with natural mineral assemblages, in that very Al-rich titanite (XAl>0.65ǂ.15) is generally absent because it is either unstable with respect to other phases, or its stability field lies outside the P-T conditions realised on Earth. The grids explain both the predominant occurrence of natural Al-rich titanite at high metamorphic grade such as eclogite facies conditions, as well as its scarcity in blueschist facies rocks. Wide spacing of the Al-isopleths for titanite of many high-grade assemblages prevents their use as geobarometers or thermometers. The instability of end-member CaAlFSiO4 with respect to other phases in most assemblages modelled here is consistent with the hypothesis that the presence of structural stresses in the crystal lattice of CaAlFSiO4 influences its thermodynamic stability. The titanite structure is not well suited to accommodate Al and F instead of Ti and O, causing the relatively high Gibbs free energy of CaAlFSiO4, manifested in its standard state properties. Thus, the increasing amount of CaAlFSiO4 along the binary join is the reason why titanite with XAl>0.65ǂ.15 becomes unstable in most petrogenetic grids presented here. The compositional limit of natural titanite (XAlƸ.54) probably reflects the point beyond which the less stable end member begins to dominate the solid-solution, affecting both crystal structure and thermodynamic stability.  相似文献   

Margules parameter [ WH- TWs ]
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23