首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 677 毫秒
1.
Summary The moderator band in the heart of the ox and goat contains bundles of Purkinje fibers and nerve fibers separated by connective tissue. The axons are mostly unmyelinated and embedded in the cytoplasm of Schwann cells.Small bundles of axons run close to the Purkinje fibers. The axons dilate into varicosities 0.5 to 1.6 in diameter (mean 0.95 ), containing three types of vesicles: 1) agranular vesicles with a diameter of 400–500 Å, 2) large dense-cored vesicles with a diameter of 800–1200 Å, 3) small dense-cored vesicles with a diameter of 500 Å. Most varicosities contain agranular vesicles together with a few large dense-cored vesicles.The gap between the varicosities and the nearest Purkinje fiber is unusually wide and normally varies between 0.3 and 0.8 . No intimate nerve-Purkinje fiber contacts, with a cleft of 200 Å, were observed.  相似文献   

2.
Summary Ganglia from Auerbach's plexus of the large intestine (caecum, appendix vermiformis, colon transversum and rectum) in man, rhesus monkey and guinea-pig are composed of nerve cells and their processes, typical Schwann cells and a vast neuropil. The neuropil consists of dendrites and axons of intrinsic nerve cell perikarya and axons of extrinsic neurons. Axonal profiles in large nerve fibre bundles are of uniform size and appearance, embedded in infoldings of Schwann cell cytoplasm and contain occasional large granular vesicles, mitochondria and neurotubules. Preterminal axons widen into vesicle filled varicosities, some of which establish synaptic contact with intrinsic nerve cell bodies.At least three different types of neuronal processes can be distinguished in the myenteric neuropil according to the size, appearance and commutual proportion of vesicles present in axonal varicosities, and their ability to accumulate exogenous 5- and 6-hydroxydopamine and 5-hydroxydopa: 1. Axonal enlargements containing a major population of small electron lucent synaptic vesicles (350–600 Å in diameter) together with a small number of membrane-bound, opaque granules (800–1,100 Å). These profiles have been identified as cholinergic axons. The boutons establish synaptic contacts with dendritic processes of intrinsic nerve cell bodies; membrane specializations are found at the preand postsynaptic sites. 2. Axonal beads of sometimes very large diameter, containing an approximately equal amount of large granular vesicles (850–1,600 Å) and small, electron lucent or faintly opaque vesicles (400–600 Å). The granular core of the large vesicles is of medium electron density and may either fill the entire vesicle or is separated from the limiting membrane by a more or less clear interspace. The fibres probably belong to intrinsic neurons, and because of the similarity of the large, membrane-bound vesicles with neurosecretory elementary granules, they have been designated p-type fibres (polypeptide fibres). The granular core of the vesicles in these fibres becomes more electron dense after treatment with 5-OH-dopa. The accumulation of an amine precursor analogue in combination with a possible storage of a polypeptide substance (or an ATP-like substance) resembles the situation in several diffusely distributed endocrine cell systems. 3. Varicosities of axons equipped with small (400–600 Å) empty or sometimes granular vesicles, medium sized (500–900 Å) vesicles with highly electron dense cores and occasional large (900–1,300 Å) granular vesicles. Pretreatment with 5-OH-dopamine increases the electron density in almost all medium-sized granular vesicles and some of the large granular vesicles; an osmiophilic core develops in some small vesicles. 6-hydroxydopamine results in degenerative changes in the varicosities of this type of neurons. Concomitantly, both catecholamine analogues markedly reduce neuronal noradrenaline in the large intestine, as demonstrated by fluorescence histochemistry and in fluorimetric determinations. The ultrastructural features of these varicosities and their reaction to 5- and 6-OH-dopamine indicate that they belong to adrenergic, sympathetic nerves. No membrane specializations could be detected at sites of close contact of the adrenergic boutons with dendrites and cell bodies of intrinsic nerve cells.Supported by grants from the Deutsche Forschungsgemeinschaft.Supported by a grant from Albert Pahlsson's Foundation, Sweden. The work was carried out within a research organization sponsored by the Swedish Medical Research Council (projects No. B70-14X-1007-05B, B70-14X-712-05, and B70-14X-56-06).  相似文献   

3.
Summary In the median eminence of the newt a medial region and two lateral regions are described.In cross section, the medial region appears to be made up of 1) an outer or glandular zone (Zone I) containing aldehyde-thionine-positive and negative nerve fibres and blood capillaries. Nerve fibres appear aligned in palisade array along the capillaries. 2) An inner zone (Zone II) made up of a) a layer of aldehyde-thionine-positive nerve fibres (fibrous layer) belonging to the preoptic hypophyseal tract and b) a layer of ependymal cells lining the infundibular lumen and reaching the blood vessels with their long processes.The lateral regions display a less pronounced stratification and aldehyde-thionine positive nerve fibres are nearly absent.A slender lamina (ependymal border) containing mainly aldehyde-thionine-positive nerve fibres and ependymal cells connects the median eminence to the pars nervosa.At the ultrastructural level, in the outer zone of the medial region at least 4 types of nerve fibres and nerve endings are identified:Type I nerve fibres containing granular vesicles of 700–1000 Å and clear vesicles (250–400 Å).Type II nerve fibres containing granular vesicles and polymorphous granules of 900–1300 Å and clear vesicles (250–400 Å).Type III nerve fibres containing dense granules of 1200–2000 Å and clear vesicles of 250–400 Å.Type IV nerve fibres containing only clear vesicles of 250–400 Å. In the inner zone too, all these nerve fiber types are found among ependymal cells, while the fibrous layer consists of nerve fibres containing granules of 1200–2000 Å in diameter.In the lateral regions Type I, Type II and Type IV nerve fibres and their respective perivascular terminals are found; axons containing dense granules (1200–2000 Å) are scanty. In these regions typical synapses between Type I nerve fibres and processes rich in microtubules are visible.The classification and functional significance of nerve fibres in the median eminence are still unsolved, but it may be assumed that nerve fibres of the medial region belong to both the preoptic hypophyseal and tubero hypophyseal tract, while the lateral regions are characterized by nerve fibres of the tubero hypophyseal tract. Peculiar specializations of the ependymal cells in the median eminence of the newt are also discussed.Work supported by a grant from the Consiglio Nazionale delle Ricerche.The authors are indebted to Mr. G. Gendusa and P. Balbi for technical assistance.  相似文献   

4.
Summary Preliminary ultrastructural studies on the effects of 5,6-Dihydroxytryptamine (5,6-DHT) on the anterior byssus retractor muscle (ABRM) of Mytilus show degeneration of 2 types of monoaminergic nerves after 10 days of drug treatment. One type contained large granular vesicles (560–1,680 Å) while the other had small granular vesicles (200–640 Å). These axons may possibly represent serotonergic and dopaminergic nerves, thought to innervate this muscle.Two other types of profiles seemed to be unaffected by the drug. One conforms to cholinergic nerves while the other has a predominance of large opaque vesicles (1,200–2,500 Å). The significance of these findings is discussed in the light of recent observations on the neurotoxic effects of 5,6-DHT on vertebrate and molluscan nerves.The author is grateful to Professor G. Burnstock for research facilities and Professor B. M. Twarog for advice and encouragement. This work was supported by the Ramaciotti Foundation  相似文献   

5.
Summary Apart from cholinergic nerve fibers, which make up the main part of efferent fibers to the avian adrenal gland (Unsicker, 1973b), adrenergic, purinergic and afferent nerve fibers occur. Adrenergic nerve fibers are much more rare than cholinergic fibers. With the Falck-Hillarp fluorescence method they can be demonstrated in the capsule of the gland, in the pericapsular tissue and near blood vessels. By their green fluorescent varicosities they may be distinguished characteristically from undulating yellow fluorescent ramifications of small nerve cells which are found in the ganglia of the adrenal gland and below the capsule. The varicosities of adrenergic axons exhibit small (450 to 700 Å in diameter) and large (900 to 1300 Å in diameter) granular vesicles with a dense core which is usually situated excentrically. After the application of 6-hydroxydopamine degenerative changes appear in the varicosities. Adrenergic axons are not confined to blood vessels but can be found as well in close proximity of chromaffin cells. Probably adrenergic fibers are the axons of large ganglion cells which are situated mainly within the ganglia of the adrenal gland and in the periphery of the organ and whose dendritic endings show small granular vesicles after treatment with 6-OHDA.A third type of nerve fiber is characterized by varicosities containing dense-cored vesicles with a thin light halo, the mean diameter (1250 Å) of which exceeds that of the morphologically similar granular vesicles in cholinergic synapses. Those fibers resemble neurosecretory and purinergic axons and are therefore called p-type fibers. They cannot be stained with chromalum-hematoxyline-phloxine. Axon dilations showing aggregates of mitochondria, myelin bodies and dense-cored vesicles of different shape and diameter are considered to be afferent nerve endings. Blood vessels in the capsule of the gland are innervated by both cholinergic and adrenergic fibers.Supported by a grant from the Deutsche Forschungsgemeinschaft (Un 34/1).  相似文献   

6.
Summary The ultrastructure of axon profiles which were completely ensheathed in smooth muscle cells has been described in the guinea pig, mouse and rat vas deferens. The axon profiles contained both small (500 Å) and large (1,000 Å) vesicles, neurotubules and mitochondria. Adrenergic axons were clearly identified within smooth muscle cells after treatment of the tissue with 5-or 6-hydroxydopamine, drugs which cause specific ultrastructural changes in adrenergic axons. The ensheathed axons were separated from the surrounding muscle cells by narrow, regular gaps, usually about 100–300 Å wide. Schwann cells seldom accompanied the ensheathed axons. Axons often penetrated the muscle cells in the nuclear region and profiles were sometimes observed among the perinuclear organelles.  相似文献   

7.
Zusammenfassung Der Nucleus infundibularis verschiedener Reptilien wurde licht- und elektronenmikroskopisch untersucht. Zellen dieses Kernes entsenden Fortsätze durch ein mehrreihiges Ependym in den 3. Ventrikel und bilden dort freie, intraventrikuläre Nervenendigungen (Liquorkontakt-Nervenendigungen, Lkne). Lichtmikroskopisch konnten in der Kerngruppe a) kleine, AChE-negative, toluidinblaue und b) große, AChE-positive, mit Toluidinblau hell erscheinende Nervenzellen unterschieden werden.Die knöpfchenförmigen LKNE weisen Elemente des endoplasmatischen Retikulums, freie Ribosomen, eine wechselnde Anzahl Mitochondrien, einzelne Lysosomen, asymmetrische Zilien (Typ 9+0) mit akzessorischem Basalkörper und Zilienwurzeln auf. Zwei LKNE-Typen sind unterscheidbar: a) LKNE mit granulierten Vesikeln mit einem Durchmesser von 800–1100 Å und b) LKNE mit großen, elektronendichten Granula (Durchmesser 1200–1600 Å).Im Lumen des 3. Ventrikels treten kleinkalibrige Axone auf, die kleine, granulierte Bläschen (Durchmesser 700–900 Å) enthalten und mit den LKNE des Nucleus infundibularis intraventrikuläre Synapsen bilden.Die Perikaryen des Nucleus infundibularis weisen ein reichliches endoplasmatisches Retikulum, zahlreiche Polyribosomen, Neurotubuli und Mitochondrien auf. Ähnlich wie bei den LKNE sind zwei Perikaryenarten zu unterscheiden: a) Perikaryen mit granulierten Vesikeln (Durchmesser 800–1100 Å) und b) solche mit elektronendichten Granula (1200–1700 Å). Außerdem kommen verschiedene Arten axosomatischer und axodendritischer Synapsen vor.Die Funktion der intraventrikulären Nervenendigungen und verschiedenen Synapsenarten in der Kerngruppe wird im Hinblick auf einen Informationsaustausch zwischen dem Liquor cerebrospinalis und dem Nucleus infundibularis diskutiert.
Liquor contacting neurons in the infundibular nucleus
Summary The infundibular nucleus of various reptiles was studied light and electron microscopically. Cells of this nucleus send processes through a stratified ependyma into the 3rd ventricle where they form free, intraventricular nerve terminals (liquor contacting nerve endings, LCNE). In the nucleus, two kinds of neurons could be distinguished light microscopically: a) small, AChE-negative, toluidine blue neurons, and b) large, AChE-positive cells staining light with toluidine blue.The club shaped LCNE contain elements of the endoplasmic reticulum, free ribosomes, a various amount of mitochondria, and single lysosomes. The terminals bear asymmetrical cilia (type 9+0) supplied with accessory basal bodies and rootlet fibres. Two kinds of LCNE are demonstrable: a) LCNE containing dense-core vesicles with a diameter of about 800–1100 Å, and b) LCNE with large, electron-dense granules (diameter about 1,200–1,600 Å). In the lumen of the 3rd ventricle, there occur small axons that contain small granulated vesicles (diameter about 700–900 Å), and that form intraventricular synapses with the LCNE of the infundibular nucleus.The perikarya of the infundibular nucleus contain an abundant endoplasmic reticulum, numerous polyribosomes, neurotubules and mitochondria. Similarly to the LCNE, two kinds of perikarya can be distinguished: a) perikarya containing granulated vesicles (diameter about 800–1100 Å), and b) perikarya with electron-dense granules (diameter about 1200–1700 Å). Furthermore, different types of axosomatic and axodendritic synapses occur.The function of the intraventricular nerve terminals and the different types of synapses in the nucleus is discussed with regard to an exchange of informations between the cerebrospinal fluid and the infundibular nucleus.
  相似文献   

8.
Summary The ultrastructure of the perivascular axon terminals of the lacrimal gland in monkeys is investigated electronmicroscopically. Evidence is presented to show that axon terminals populated with small granular vesicles (300 to 500 Å) are sympathetic. Large granular vesicles (650 to 1,000 Å) are present in both sympathetic and parasympathetic terminals.Lacrimal arterioles have both sympathetic and parasympathetic axon terminals disposed between the adventitia and media, which do not form neuro-effector junctions. Capillaries and venules are sparsely innervated. Both parasympathetic and sympathetic axons are shown to innervate capillaries.Results from degeneration studies show that sympathetic and parasympathetic terminal axons lie within the cytoplasm of single Schwann cells.  相似文献   

9.
Summary The innervation of the islets of Langerhans of normal albino rats and of albino rats treated with several daily doses of 125 mg/kg of alloxan was studied by electron microscopy. In the normal rat, nerve endings containing either agranular vesicles (200–400 Å) alone or in combination with large granular vesicles (500–800 Å) were found on both alpha and beta cells. Infrequently a third type of nerve ending containing small granular synaptic vesicles could be observed. Bundles of unmyelinated axons were also seen, as were typical autonomic ganglion cells. Similar normal neural elements were noted in rats treated with alloxan. However, islets of alloxan-treated animals also possess large elliptical profiles which appear to be dystrophic nerve terminals. These structures most frequently contact degranulated beta cells. Islets of Langerhans fixed with zinc iodide-osmium (ZIO) reported to specifically impregnate synaptic vesicles were also studied. Synaptic vesicles of normal axons and nerve endings as well as of the dystrophic structures were filled with ZIO reactive material. These studies suggest that alloxan may induce autonomic nerve ending changes in the rat endocrine pancreas. This may result from neuronal hyperactivity in an attempt to secrete insulin from the post-alloxan insulin-depleted beta cell.  相似文献   

10.
Summary The dilatator muscle cells form short projections into the stroma of the iris. Close to these projections run several nerve bundles. The unmyelinated axons often show enlargements (varicosities) containing mitochondria and vesicles. Several of the varicosities are partly denuded of the Schwann cell and are covered only by a basement membrane. The varicosities are then separated from the muscle cells only by basement membranes and a 0.1–1 stromal space. The ultrastructure of the iris dilatator muscle thus also fits the view that the autonomic ground plexus with its varicosities forms the real innervation apparatus.The smallest space between axon and muscle has a width of 700–900 Å and is cemented with basement membrane material. It is suggested that the main function of these contact sites is not to transmit a nerve impulse but to anchor the nerves to their effector organ.This study has been supported by grants from the Swedish State Research Council (U 267) and the United States Public Health Service (N B 2854-04).  相似文献   

11.
Summary The innervation of the intestinal wall in the teleosts Myoxocephalus and Pleuronectes was examined electron microscopically. Two classes of axons can be identified. The first, which is in the majority, contains numerous 50–150 nm granular vesicles as well as some 40–50 nm agranular vesicles while the second contains predominantly the 40–50 nm agranular vesicles. Chromate/dichromate staining methods suggest that the first type is aminergic. Both types lie in close association with the perikarya of intrinsic myenteric neurons but only axons containing predominantly agranular vesicles have synaptic membrane specialisations. No axon bundles pass into the longitudinal muscle layer in Myoxocephalus gut and though some do in Pleuronectes, they do not closely approach the smooth muscle cells. Axons containing large granular vesicles lie in intimate contact with the myocytes of the circular muscle layer. Both axon types pass through the submucosa to form a plexus underneath the mucosal epithelium. Varicosities containing agranular or granular vesicles are separated from the epithelial cells by a gap of about 200 nm in which lies a basal lamina.  相似文献   

12.
Summary The nerve supply to the iridic melanophores of the rat was studied with the electron microscope. The adrenergic and cholinergic terminals were identified with the aid of 5-hydroxydopamine, which produces dense-cored 400–800 Å synaptic vesicles in adrenergic axon varicosities, whereas the synaptic vesicles of cholinergic axons remain empty. It was found that both adrenergic and cholinergic terminal axons come in close apposition (200–250 Å) with the melanophores. The appositions have the same appearance as synapses in peripheral tissues. It seems likely that the murine iridic melanophores have a double innervation, although its functional significance is obscure.This work has been supported by grants from Lunds Läkarsällskap, the Swedish Medical Research Council (Project no. B69-14X-2321-02 and B69-14X-712-04C) and NIH (06701-02).  相似文献   

13.
Summary The smooth muscle cells studied contain a central core of thick and thin myofilaments surrounded by a peripheral layer of myofilament-free cytoplasm. Numerous vesicles, tubules, microfilaments, mitochondria and fine granules are present in the peripheral cytoplasm. Glycogen particles are distributed in large or small groups in both the peripheral cytoplasm and among the myofilaments. In contracted muscle cells the peripheral cytoplasm bulges out at regular intervals into the intercellular connective tissue. Numerous close contacts between single, usually naked, axons and these cytoplasmic protrusions occur. The axons at these contacts contain numerous small (500 Å in diameter) and large vesicles (800–1000 Å in diameter). Sometimes a number of axons simultaneously form close contacts with a muscle cell. These close contacts are considered to be the sites at which transmitter is released and acts on the muscle cell membrane.I wish to thank Professor G. Burnstock for making laboratory facilities available. This work has been supported by the Australian Research Grants Committee.  相似文献   

14.
Summary In the frog median eminence, fixed with glutaraldehyde and osmium tetroxide, four types of nerve endings can be generally distinguished. These endings are in contact with the pericapillary spaces of primary portal vessels and can be identified by the internal structure and the size of their granules and vesicles. Type 1 contains large granules (1500–2400 Å in diameter) and small clear vesicles (300–500 Å in diameter), type 2 intermediate granules (about 1100–1700 Å in diameter) and small clear vesicles, type 3 small granules (about 600–1000 Å in diameter) and small clear vesicles, type 4 only numerous small clear vesicles. The mixed types containing the large, intermediate and small dense granules in the same ending are infrequently found.After KMnO4 or LiMnO4 fixation the granules and vesicles mentioned above are observed as follows. The large granules in the type 1 nerve ending appear mostly pale or less-dense. The intermediate granules in the type 2 also appear mostly pale or less-dense, but some frequently show granules of high density. The small granules in the type 3 consistently contain the dense substance and these endings can be subdivided into two different types according to the populations of different sizes of dense granules [type 3a (900–1000 Å) and type 3b (500–800 Å)]. Dense-cored and cleared-synaptic vesicles are frequently present with together in the type 3 endings. The small vesicles (300–400 Å), in the type 4, appear generally pale (type 4a), but some nerve endings contain small dense cored-vesicles (type 4b).The author wishes to thank Prof. H. Fujita for his advice and criticism.  相似文献   

15.
The laminar ultrastructure of the dorsal cochlear nucleus was studied in ultrathin wide frontal sections, passing through all layers of the nucleus, placed on blinds with a Formvar film. The ultrastructural characteristics of cells corresponding to the cell types distinguished previously by light microscopy are described. The laminar distribution of the axon terminals was studied. In the surface and middle layers of the neuropil, by contrast with the deep layer, large branching terminals measuring 6–8 µ with spherical synaptic vesicles 40–50 nm in diameter, small terminals measuring 1–3 µ with spherical synaptic vesicles 45–60 nm in diameter, and thin unmyelinated fibers running perpendicularly to the plane of the section were predominant. On transition from the middle to the deep layer there was a corresponding increase in the number of myelinated axons and large oval-shaped terminals measuring 4–6 µ, with central mitochondria and neurofilaments, and also with spherical synaptic vesicles 50–60 nm in diameter, in the neuropil. In the surface and middle layers granular cells also were more numerous than in the deep layer. The functional significance of terminals of each type is discussed.N. A. Semashko Moscow Medical Stomatologic Institute. Translated from Neirofiziologiya, Vol. 10, No. 4, pp. 368–374, July–August, 1978.  相似文献   

16.
Summary The serotonergic innervation of the genital chamber of the female cricket, Acheta domestica, has been investigated applying anti-serotonin (5-HT) immunocyto-chemistry at both light- and electron-microscopic levels as well as using conventional electron microscopy. Whole mount and pre-embedding chopper techniques of immuno-cytochemistry reveal a dense 5-HT-immunoreactive network of varicose fibers in the musculature of the genital chamber. All of these immunoreactive fibers originate from the efferent serotonergic neuron projecting through the nerve 8v to the genital chamber (Hustert and Topel 1986; Elekes et al. 1987). At the electron-microscopic level, 5-HT-immunoreactive nerve terminals, which contain small (50–60 nm) and large ( 100 nm) agranular vesicles as well as granular vesicles (100nm), contact the muscle fibers or the sarcoplasmic processes without establishing specialized neuromuscular connections. In addition to the 5-HT-immunoreactive axons, two types of immunonegative axons can also be found in the musculature. By use of conventional electron microscopy, three ultrastructurally distinct types of axon processes can be observed, one of which resembles 5-HT-immunoreactive axons. While the majority of the varicosities do not synapse on the muscle fibers, terminals containing small (50–60 nm) agranular vesicles occasionally form specialized neuromuscular contacts. It is suggested that the 5-HTergic innervation plays a non-synaptic modulatory role in the regulation circular musculature in the genital chamber of the cricket, while the musculature as a whole may be influenced by both synaptic and modulatory mechanisms.Fellow of the Alexander von Humboldt-Stiftung  相似文献   

17.
Zusammenfassung Im III. und IV. Ventrikel des Kaninchengehirns kommen zahlreiche nackte Axone mit kolbenförmigen Endigungen vor, die kleine helle Vesikel (400–800 Å), Vesikel mit dichtem Kern (650–1000 Å) und Mitochondrien mit einem prismatischen Tubulus enthalten. Das Plasmalemm der Kolben bildet mit dem apikalen Plasmalemm des Ependyms synapsenähnliche Kontakte. Sie sind durch praesynaptische dense bodies, Membranverdickung, subjunctional bodies und parallele Filamente (50 Å) charakterisiert, die den synaptischen Spalt (200 Å) überqueren. Außerdem kommen zwischen den Kolben und dem Ependym desmosomenähnliche Kontakte vor.
Synapse-like contacts between the intraventricular axonal endbulbs and the apical plasmalemma of ependyma (rabbit)
Summary In the 3rd and 4th ventricle of the brain (rabbit) a great number of non-myelinated axons are found having bulb like endings. These terminals contain small clear vesicles (400–800 Å), dense cored vesicles (650–1000 Å), and mitochondria, wich are characterized by a single prismatic tubule. The plasmalemma of the bulb is in a synapse-like contact with the apical plasmalemma of the ependyma. The contact is characterized by presynaptic dense bodies, membrane thickening, subjunctional bodies, and parallel intersynaptic filaments (50 Å) across the synaptic gap (200 Å). Besides, between the bulbs and ependyma desmosome-like junctions are found.


Die Untersuchung wurde mit dankenswerter Unterstützung durch die Deutsche Forschungsgemeinschaft durchgeführt.  相似文献   

18.
Summary The fine structure of neurosecretory nerves and endings associated with the sheath of the infraesophageal ganglion ofHelix aspersa is described. The sheath is a neurohemal organ whose vascularized stroma receives both monoaminergic and peptidergic endings. The latter occur along the surface of the nerves or scattered within the stroma. They include a complex population of vesicular profiles. The granular vesicles (1300–3000 Å in diameter) exhibit structural modifications that may be related to the intra-axonal release of their neurohormones. The agranular vesicles (500–2000 Å in diameter) occur in large numbers and lie mostly adjacent to the axon surface. Synaptoid specializations seem to represent active sites for the extracellular discharge of neurosecretory material. The monoaminergic endings so far studied lack synaptoid specializations and contain small granular (800–1300 Å in diameter) and agranular (700 Å in diameter) vesicles. Two kinds of non-neural cells are associated with the nerves: glial cells and melanocytes.Partly supported by Conicyt (Grant 105) and Comisión de Investigación Científica Universidad de Chile (Grant 48). The technical assistance of Mr. Arnold van Dun is gratefully acknowledged. We also thank the Department of Physics, Faculty of Physical Sciences and Mathematics, University of Chile, for the use of a Philips EM-300 electron microscope.  相似文献   

19.
The pharyngeal retractor muscle of the snailHelix lucorum is innervated by a pair of nerves containing axons of two types, for which there are two corresponding types of myoneural junctions with the muscle cells. The junctions of type I correspond to the thick axons. The terminals of these axons, which contain numerous spherical transparent vesicles (41±5 nm) and fewer vesicles of the dense-core type (67±3 nm), make contact mainly with noncontracting sarcoplasmic projections of the muscle cells. Junctions of type II correspond to thin axons, containing many granules. The terminals of these axons make contact with contractile parts of the muscle cells and they contain a heterogeneous population of vesicles: small spherical clear vesicles (44±2 nm), granules with fine-grained contents (135±5 nm), and a few spherical dense-core vesicles. The distance between the muscle cells is usually great — over 50 nm, but in the region of the sarcoplasmic processes the surface membranes come together to form a gap which in some areas does not exceed 10 nm.N. K. Kol'tsov Institute of Developmental Biology, Academy of Sciences of the USSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 5, pp. 539–542, September–October, 1977.  相似文献   

20.
Summary The smooth muscle cells in the foot of Helix aspersa are arranged in bundles which interweave to form a complex mesh. In the peripheral cytoplasm of the muscle cells there is a system of interconnected obliquely and longitudinally orientated tubules. The full extent of this system has not been determined; its possible function in relation to Ca++ storage and excitation-contraction coupling is discussed. Longitudinal tubules are present among the myofilaments and in association with mitochondria. Distributed throughout the myofilaments are elliptically shaped dense bodies, the fine structure of which resembles an accumulation of thin filaments. Located on the plasma membrane of the muscle cells are dense areas; the fine structure and relationships of these cellular elements resemble desmosomes. They may serve as attachment points for thin, cytoplasmic filaments (not necessarily myofilaments). The muscle cells are innervated by axons which diverge from a coarse, neural plexus (the sole plexus). The axons initially come into close contact with the muscle cells and then pass over their surfaces for up to 35 before being gradually enveloped by flange-like protrusions of the muscle cells. These axons contain either, (i) agranular vesicles (600 Å in diameter), (ii) agranular and very dense granular vesicles (1000 Å in diameter) or (iii) agranular and less dense, granular vesicles (1000 Å in diameter). The possible role of these inclusions as sites of excitatory and inhibitory transmitters is discussed.I wish to thank Professor G. Burnstock for making laboratory facilities available. This work has been supported by the Australian Research Grants Committee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号