首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mani  A.  Sreedharan  C. R. 《Pure and Applied Geophysics》1973,106(1):1180-1191
The latitudinal and temporal variations in the vertical profiles of ozone over the Indian subcontinent are discussed. In the equatorial atmosphere represented by Trivandrum (8°N) and Poona (18°N), while tropospheric ozone shows marked seasonal variations, the basic pattern of the vertical distribution of ozone in the stratosphere remains practically unchanged throughout the year, with a maximum at about 28 to 26 km and a minimum just below the tropopause. The maximum total ozone occurs over Trivandrum in the summer monsoon season and the latitudinal anomaly observed over the Indian monsoon area at this time is explained as arising from the horizontal transport of ozone-rich stratospheric air from over the thermal equator to the southern regions.In the higher latitudes represented by New Delhi (28°N), the maximum occurs at 23 km. Delhi, which lies in the temperate regime in winter, shows marked day-to-day variations in association with western disturbances and the strong westerly jet stream that lies over north and central India at this time.Although the basic pattern of the vertical distribution of ozone in the equatorial atmosphere is generally the same in all seasons, significant though small changes occur in the lower stratosphere and in the troposphere. There are small perturbations in the ozone and temperature structures, distinct ozone maxima being always associated with temperature inversions. There are also large perturbances not related to temperature, ozone-depleted regions normally reflecting a stratification of either destructive processes or materials such as dust layers or clouds at these levels. Particularly interesting are the upper tropospheric levels just below the tropopause where the ozone concentration is consistently the smallest, in all seasons and at all places where soundings have been made in India.  相似文献   

2.
利用2008年中山站、Amundesen-Scott(SouthPole)站和Neumayer站为期一年的温度和臭氧探空数据,对AIRS第六版温度和臭氧垂直廓线产品在南极的精度进行了验证.结果表明,AIRS温度与探空温度总体上具有显著的一致性,其中对流层偏差最小(RMSe2℃),近地面温度由于受到下垫面影响偏差略大(RMSe~2℃),平流层偏差较大(2℃RMSe3℃),AIRS温度平均低于探空观测且受季节变化影响显著,秋冬季偏差整体上高于春夏季.AIRS臭氧反演精度在平流层(RMSe~25%)要优于对流层(RMSe~30%),RMSe最大值出现在UT-LS区域(可达40%)且在"臭氧洞"期间明显增大.AIRS产品精度在南极沿岸和内陆存在差异,由于南极地区探空资料较少且主要位于沿海,故在南极内陆地区进行探空观测对于提高卫星资料精度,改善该区域天气预报能力具有重大意义.  相似文献   

3.
The global structures of annual oscillation (AO) and semiannual oscillation (SAO) of stratospheric ozone are examined by applying spherical harmonic analysis to the ozone data obtained from the Nimbus-7 solar backscattered UV-radiation (SBUV) measurements for the period November 1978 to October 1980. Significant features of the results are: (1) while the stratospheric ozone AO is prevalent only in the polar regions, the ozone SAO prevails both in the equatorial and polar stratospheres; (2) the vertical distribution of the equatorial ozone SAO has a broad maximum of the order of 0.5 (mixing ratio in g/g) and the maximum appears earlier at high altitude (shifting from May [and November] at 0.3 mb [60 km] to November [and May] at 40 mb); (3) above the 40 km level, the maximum of the polar ozone SAO shifts upward towards later phase with altitude with a rate of approximately 10 km/month in both hemispheres; (4) vertical distributions of the polar ozone AOs and SAOs show two peaks in amplitude with a minimum (nodal layer) in between and a rapid phase change with altitude takes place in the respective nodal layers; and (5) the heights of the ozone AO- and SAO-peaks decrease with latitude. The main part of AOs and SAOs of stratospheric ozone including hemispheric asymmetries is ascribable to: (i) temperature dependent ozone photochemistry in the upper stratosphere and mesosphere, (ii) variations of radiation field in the lower stratosphere affected by the annual cycle of solar illumination and temperature in the upper stratosphere and (iii) meridional ozone transport by dynamical processes in the lower stratosphere.  相似文献   

4.
Examined are temperature and ozone variations in the Northern Hemisphere stratosphere during the period 1958–77, as estimated from radiosondes rocketsondes, ozonesondes, and Umkehr measurements. The temperature variation in the low tropical stratosphere is a combination of the variation associated with the quasi-biennial oscillation, and a variation nearly out of phase with the pronounced 3-yearly temperature oscillation (Southern Oscillation) present in the tropical troposphere since 1963. Based on radiosonde and rocketsonde data, the quasibiennial temperature oscillation can be traced as high as the stratopause, the phase varying with both height and latitude. However, the rocketsonde-derived temperature decrease of several degrees Celsius in the 25–55 km layer of the Western Hemisphere between 1969 (sunspot maximum) and 1976 (sunspot minimum) is not apparent in high-level radiosonde data, so that caution is advised with respect to a possible solar-terrestrial relation.There has been a strong quasi-biennial oscillation in ozone in the 8–16 km layer of the north polar region, with ozone minimum near the time of quasi-biennial west wind maximum at a height of 20 km in the tropics. A quasi-biennial oscillation in ozone (of similar phase) is also apparent from both ozonesonde data and Umkehr measurements in 8–16 and 16–24 km layers of north temperate latitudes, but not higher up. Both measurement techniques also suggest a slight overall ozone decrease in the same layers between 1969 and 1976, but no overall ozone change in the 24–32 km layer. Umkehr measurements indicate a significant 6–8% increase in ozone amount in all stratospheric layers between 1964 and 1970, and in 1977 the ozone amount in the 32–46 km layer was still 4% above average despite the predicted depletion due to fluorocarbon emissions. The decrease in ozone in the 32–46 km, layer of mid latitudes following the volcanic eruptions of Agung and Fuego is believed to be mostly fictitious and due to the bias introduced into the Umkehr technique by stratospheric aerosols of volcanic origin. Above-average water vapor amounts in the low stratosphere at Washington, DC, appear closely related to warm tropospheric temperatures in the tropics, presumably reflecting variations in strength of the Hadley circulation.  相似文献   

5.
《Journal of Atmospheric and Solar》2003,65(11-13):1235-1243
The aim of the present paper is to study the solar response in the vertical structure of ozone and temperature over the Indian tropical region and a search for any mutual relationship between their solar coefficients on a decadal scale in the lower stratosphere. For the purpose, the data obtained by ozonesonde and Umkehr methods for the lower stratospheric ozone and that of the total ozone amount from Dobson spectrophotometer during the period 1979–2001 have been analyzed. These data are analyzed using the multi-functional regression model, which takes into account most of the known natural and anthropogenic signals. The NCEP- and MSU-satellite data for the temperature over this region have been used. Results indicate an in-phase correlation of around 0.5 between ozone and solar flux (F10.7) in the vertical structure over the equatorial station, Trivandrum (8.3°N) but no significant correlation over Pune (18.3°N). The solar components of ozone and temperature indicate an in-phase but poor correlation in the lower stratospheric altitudes over both stations. However, when total ozone content data is analyzed, it indicates a very high correlation (⩾0.9) between the solar components of ozone and temperature. The solar trend in the vertical distribution of ozone is found to be of the order of 5–25% per 100 units of F10.7 solar flux for Trivandrum but it is relatively smaller (1.6–15.2%) over Pune. The solar dependence of temperature is found to be quite significant for the entire Indian tropical region with not much latitudinal variation.  相似文献   

6.
Sreedharan  C. R.  Mani  A. 《Pure and Applied Geophysics》1973,106(1):1576-1580
The vertical profiles of ozone and temperature from a series of balloon soundings at Delhi (28°N), Poona (18°N) and Trivandrum (8°N) were studied with synoptic meteorological data. While both ozone and temperature profiles show similar variations over all three stations, ozone maxima being always associated with thermally stable layers, the variations are most pronounced over Delhi, particularly in winter and in early spring when a series of western disturbances pass over north India. Both ozone and temperature profiles over Delhi show a layer structure characterized by a series of maxima and minima in both the vertical distribution of ozone and temperature and these are most pronounced in the lower stratosphere. These variations are associated with the influx of ozone-rich middle latitude stratospheric air over Delhi replacing subtropical air.  相似文献   

7.
臭氧的时空分布特征对气候和环境变化具有显著影响,随着臭氧资料数量的增加和质量的提高,有必要对臭氧时空分布特征及其与气候变化的关系进行详细研究.本文利用欧洲中期天气预报中心提供的1979—2013年的全球月平均臭氧总量资料、平流层温度场资料,采用旋转经验正交函数分解(REOF)、Morlet小波分析、合成分析等方法研究了20°N以北的北半球冬季(12—2月)臭氧总量异常的主要空间分布结构与时间演变特征,并进一步分析了主要模态与平流层上层(2hPa)、中层(30hPa)以及下层(100hPa)温度异常的关系.结果表明:近30年北半球冬季臭氧总量异常变化最显著的区域主要有5个,分别位于极地地区(75°N—90°N,0°—360°)、北半球副热带地区(20°N—40°N,0°—360°)、阿拉斯加地区(60°N—75°N,180°—260°E)、北大西洋地区(45°N—60°N,310°E—360°E)及西伯利亚地区(50°N—65°N,80°E—130°E).5个区域的冬季臭氧总量异常具有明显的年际和年代际变化特征.1980年代后期是各个区域的臭氧总量异常由年代际偏多转为偏少的转换时段.此外,各区域存在显著的年际变化周期,而且各个区域的年际周期存在明显的差异.臭氧总量异常变化与平流层温度异常变化的关系表明,臭氧总量异常的增加(减少)能够导致平流层上层温度异常偏冷(暖)和平流层中、下层温度异常偏暖(冷),其中平流层中层温度异常的偏暖(冷)程度要比下层更加明显.  相似文献   

8.
Zonal mean data and amplitudes and phases of planetary zonal waves were derived from daily hemispheric maps for tropospheric and stratospheric levels, for the four winters 1975–76 to 1978–79. Important year-to-year fluctuation in zonal means and wave activity are described, most notable of which are the changes from 1975–76 to 1976–77. Comparison of the relative strengths of the stratospheric and tropospheric jet streams shows a strong negative correlation (–0.8) between monthly mean zonal stratospheric winds (at 10 mb, 65°N) and zonal tropospheric winds (at 200 mb, 32.5°N, in the jet core) and a positive correlation (+0.7) between the stratospheric 10 mb winds and the tropospheric 200 mb winds at 65°N. Parameters correlated were the departures from the climatological mean zonal winds. The structure of correlation between wave amplitudes in the same wave number (1, 2) at different altitudes and between wave numbers 1 and 2 is investigated. We find a high correlation (+0.93) between wave 1 in the stratosphere (10 mb height) and wave 2 (height) in the troposphere at 65°N; but only a weak correlation (+0.2) between wave 1 amplitudes in the stratosphere and troposphere. These results suggest the possible importance of wave-wave interactions in processes linking the stratosphere and troposphere. The wave correlations presented here are based on comparisons of monthly means of daily amplitudes; the correlation structure in individual wave developments may differ, in view of the likelihood of altitudinal lags in wave amplification.  相似文献   

9.
A variety of climate perturbations have the potential to alter the thermodynamic and dynamical characteristics of the middle atmosphere, which may then affect tropospheric climate. Increased thermal emission from rising stratospheric CO2 levels and scattering of solar radiation from stratospheric volcanic aerosols have a direct impact on surface temperatures, while variations in stratospheric water vapor and ozone can affect tropospheric temperatures. Observations and modeling experiments suggest that these perturbations, as well as solar irradiance variations operating through the stratosphere, may affect tropospheric dynamics, such as planetary wave amplitudes and Hadley cell intensity. In addition, climate changes will probably alter tropospheric/stratospheric exchange, with the potential for modifying trace gas distributions and climate forcing. These issues are reviewed in the light of the incorporation of middle atmosphere studies into IGBP.  相似文献   

10.
冬季太阳11年周期活动对大气环流的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
刘毅  陆春晖 《地球物理学报》2010,53(6):1269-1277
利用气象场的再分析资料和太阳辐射活动资料,对太阳11年周期活动影响北半球冬季(11月~3月)大气环流的过程进行了统计分析和动力学诊断.根据赤道平流层纬向风准两年振荡(QBO)的东、西风状态对太阳活动效应进行了分类讨论,结果表明:东风态QBO时,太阳活动效应主要集中在赤道平流层中、高层和南半球平流层,强太阳活动时增强的紫外辐射加热了赤道地区的臭氧层,造成平流层低纬明显增温,同时加强了南半球的Brewer-Dobson(B-D)环流,引起南极高纬平流层温度增加;而北半球中高纬的环流主要受行星波的影响,太阳活动影响很小.西风态QBO时,太阳活动效应在北半球更为重要,初冬时强太阳活动除了加热赤道地区臭氧层外,还抑制了北半球的B-D环流,造成赤道平流层温度增加和纬向风梯度在垂直方向的变化,从而改变了对流层两支行星波波导的强度;冬末时在太阳活动调制下,行星波向极波导增强,B-D环流逐渐恢复,造成北半球极地平流层明显增温,同时伴随着赤道区域温度的下降.  相似文献   

11.
Computations of the mean meridional motion field in the stratosphere are applied to ozone distributions to evaluate the associated ozone concentration changes. These changes are compared with those produced by photochemical and quasi-horizontal eddy processes. For the period January–April 1964 there is a cooperative action between the mean and eddy motions with mean subsidence in middle latitudes supplying ozone to be carried polawards and equatorwards by quasi-horizontal eddy processes. At low latitudes mean horizontal motions offset the eddy transport while at high latitudes mean rising motion is the offsetting term. The mean ozone flux through 50 mb, 3.5×1029 molecules sec–1, is comparable with the fluxes evaluated by other techniques.The spring maximum is thought to be due to a modulation of the energy supply to the stratospheric eddies which, in turn, force the mean motions. Longer-term changes are to be expected; for example during Ice Ages when increased tropospheric eddy activity is anticipated there should be higher total ozone.  相似文献   

12.
We present time series of January–May mean mesosphere/lower thermosphere (MLT) mean winds and planetary wave (PW) proxies over Europe together with stratospheric stationary planetary waves (SPW) at 50°N and time series of European ozone laminae occurrence. The MLT winds are connected with stratospheric PW and laminae at time scales of several years to decades. There is a tendency for increased wave activity after 1990, together with more ozone laminae and stronger MLT zonal winds. However, possible coupling processes are not straightforward. While mean MLT winds before the 1990s show similar interannual variations than stratospheric PW at 100 hPa, later a tendency towards a connection of the MLT with the middle stratosphere SPW is registered. There is also a tendency for a change in the correlation between lower and middle stratosphere SPW, indicating that coupling processes involving the European middle atmosphere from the lower stratosphere to the mesopause region have changed.  相似文献   

13.
The Stratospheric Regular Sounding project was planned to measure regularly the vertical profiles of several tracers like ozone, water vapor, NOx, ClOx and BrOx radicals, aerosol, pressure and temperature, at three latitudes, to discriminate between the transport and photochemical terms which control their distribution. As part of this project, the “Istituto di Fisica dell’Atmosfera” launched nine laser backscattersondes (LABS) on board stratospheric balloons to make observations of background aerosol and PSCs. LABS was launched with an optical particle counter operated by the University of Wyoming. Observations have been performed in the arctic, mid-latitudes and tropical regions in different seasons. Polar stratospheric clouds have been observed in areas inside and outside the polar vortex edge. A background aerosol was observed both in mid-latitudes and in arctic regions with a backscattering ratio of 1.2 at 692 nm. Very stratified aerosol layers, possibly transported into the lower stratosphere by deep convective systems, have been observed in the lower stratosphere between 20 and 29 km in the tropics in the Southern Hemisphere.  相似文献   

14.
Summary Calculations of the covariance between ozone amounts and meridional wind in the lower stratosphere are presented for all stations in the northern hemisphere for the IGY-IGC. Northward ozone transport occurs by large-scale quasi-horizontal transient and standing eddies and the transport is a maximum early in the year. It is suggested that the transport is governed by the exchange of energy between the troposphere and stratosphere and data are presented on the energy transformations within the lower stratosphere and the transfer of energy into the region which support this suggestion. The vertical flux of energy is also calculated from tropospheric data and its seasonal changes are seen to be in the correct phase to explain the spring maximum in ozone amount.The research reported in this article was sponsored by the Atomic Energy Commission under Contract AT (30-1)2241.  相似文献   

15.
利用1979~1992年卫星TOR对流层臭氧数据库资料,以及同期太阳辐照度数据序列,考察青藏高原对流层臭氧含量变化与太阳辐射周期变化之间的关系.分析表明,青藏高原对流层臭氧分布表现出与太阳辐照度相同的变化趋势,存在着明显的太阳周期变化特征.逐月线性回归分析表明,太阳辐照度增加导致青藏高原对流层臭氧增加的正效应.在太阳周期内,太阳辐射增加可使青藏高原对流层臭氧、平流层臭氧和臭氧总量分别增加1.31、4.97、6.628DU,或4.07%、2.04%、2.28%.该特征与赤道太平洋地区完全相反,分析产生差异的原因,至少应包括两方面因素:一是背景大气NOX和水汽含量的差异;二是青藏高原频繁发生的平流层-对流层大气物质交换和输送.  相似文献   

16.
利用北半球40°N~50°N纬度带上HALOE实验测量的O3和H2O廓线资料,根据示踪成分O3和H2O空间分布的化学寿命以及输运特征时间常数等性质,在等熵坐标中构建了对流层顶附近及最低平流层300~390 K等熵面间,O3/H2O混合关系的结构形态和季节特征.结果表明: (1) 在对流层顶转换层的320~380 K等熵面间O3混合比廓线的斜率具有空间转折"突变",而H2O混合比廓线的斜率则出现空间渐变转折.在对流层顶附近O3和H2O的源分别是平流层与对流层,使O3混合比和H2O混合比在320~380 K等熵面的两侧显现出截然不同的垂直分布梯度.(2) 在对流层顶附近O3/H2O达到最小二乘意义上的最佳拟合时,两者参考关系的对流层支与平流层支呈现出非规则"L"结构形态的季节与季节内变化,其中对流层支的斜率为负,而平流层支的斜率可随季节出现正负变化.同时,由"L"形态的转角处可确定随季节变化的化学对流层顶(chemopause)特征.(3) 由O3/H2O混合关系反映出对流层不同区域空气携带的物质成分分别与平流层空气混合而形成混合层,而且可使混合层的混合线不恒定.混合层的表现在2003年、2005年1月和2003年4月的混合程度相当,混合的等熵厚度大约是30 K,即在320~350 K等熵面间.2005年11月的混合高度有所增高,进入平流层的H2O混合比要比2003年和2005年1月的小,混合的等熵厚度大约为30 K,在330~360 K等熵面间.不同季节混合的等熵厚度变化较小,但高度可随季节而变化.O3/H2O混合关系的平流层支随季节的变化很明显,1月最低平流层空气脱水是引起平流层支季节变化的重要原因.  相似文献   

17.
Recent observations suggest that there may be a causal relationship between solar activity and the strength of the winter Northern Hemisphere circulation in the stratosphere. A three-dimensional model of the atmosphere between 10–140 km was developed to assess the influence of solar minimum and solar maximum conditions on the propagation of planetary waves and the subsequent changes to the circulation of the stratosphere. Ultraviolet heating in the middle atmosphere was kept constant in order to emphasise the importance of non-linear dynamical coupling. A realistic thermo-sphere was achieved by relaxing the upper layers to the MSIS-90 empirical temperature model. In the summer hemisphere, strong radiative damping prevents significant dynamical coupling from taking place. Within the dynamically controlled winter hemisphere, small perturbations are reinforced over long periods of time, resulting in systematic changes to the stratospheric circulation. The winter vortex was significantly weakened during solar maximum and western phase of the quasi-biennial oscillation, in accordance with reported 30 mb geopotential height and total ozone measurements.  相似文献   

18.
Summary Ozone observations made during 1964 and 1965 at nine Mediterranean, central and southeast European stations (latitudes 38–52°N, longitudes 9–23°E) reveal patterns of seasonal and shorter time-variations in total ozone as well as in vertical ozone distribution. During the winter-spring season, a significant increase (20%) of ozone occurs essentially simultaneously with the spring stratospheric warming, and is noticed at all stations.—Autocorrelation coefficients show that the total ozone on any day is strongly related to the total ozone of the preceding four days in summer or one or two days in winter-spring or autumn. Changes of total ozone in southeast Europe correlate closely with those in Mediterranean Europe, and less closely with those from north central Europe.—Power spectrum analysis detects the dependence of ozone changes on processes with periods longer than 6–8 days, and indicates a significant oscillation with a period of 14–15 days, perhaps a result of the direct influence of lower stratospheric circumhemispheric circulation. — Reliable vertical ozone soundings were not available from all stations. The mean vertical profiles at Arosa, Switzerland (47°N) and Belsk, Poland (51°) are very similar. More than 60% of the variability of the total ozone is contributed by changes in ozone concentration between 10 and 24 km; less than 10% is due to variations above 33 km. Changes in ozone partial pressure at different altitudes, and relationships of those changes to total ozone, indicates that a mean vertical ozone distribution may be described adequately by considering the ozone changes in four layers: a) the troposphere, b) the lower stratosphere up to 24 km, c) a transition layer from 24 km to a variable upper border at 33–37 km, and d) the layer above 33–37 km.Part of this paper was presented at the Ozone Seminar in Potsdam, Germany, 27 September 1966.  相似文献   

19.
选用每天12∶00UTC时次的逐日ERA-Interim再分析资料,根据transformed Eulerian-mean(TEM)方程通过积分剩余速度珔v*,研究了1979—2011年间Brewer-Dobson(BD)环流的时空演变规律.并将其与downward control(DC)原理研究的结果进行比较,同时还探讨了平流层温度与BD环流之间的相互联系.结果表明,由TEM方程通过积分剩余速度珔v*估算的BD环流与利用DC原理估算的环流相比较,在热带地区的形势更加明显.环流在热带对流层中上层上升至平流层中下层,最高可达1hPa等压面附近.然后在热带外向极向下运动,最后在中高纬度下沉回到对流层.BD环流的上升中心及质量通量均随季节的变化产生变动,环流在冬半球的形势显著地强于夏半球.在春季和秋季期间,环流呈现出南北两半球的对称形势.从全球尺度物质输送的角度来看,在过去的33a间平流层BD环流的长期变化趋势是减弱的,且在平流层中下层减弱是明显的.环流的减弱趋势与纬向平均温度的长期变化趋势相匹配.  相似文献   

20.
Ozone depression in the polar stratosphere during the energetic solar proton event on 4 August 1972 was observed by the backscattered ultraviolet (BUV) experiment on the Nimbus 4 satellite. Distinct asymmetries in the columnar ozone content, the amount of ozone depressions and their temporal variations above 4 mb level (38 km) were observed between the two hemispheres. The ozone destroying solar particles precipitate rather symmetrically into the two polar atmospheres due to the geomagnetic dipole field These asymmetries can be therefore ascribed to the differences mainly in dynamics and partly in the solar illumination and the vertical temperature structure between the summer and the winter polar atmospheres. The polar stratosphere is less disturbed and warmer in the summer hemisphere than the winter hemisphere since the propagation of planetary wave from the troposphere is inhibited by the wind system in the upper troposphere, and the air is heated by the prolonged solar insolation. Correspondingly, the temporal variations of stratospheric ozone depletion and its recovery appear to be smooth functions of time in the (northern) summer hemisphere and the undisturbed ozone amount is slighily, less than that of its counterpart. On the other hand, the tempotal variation of the upper stratospheric ozone in the winter polar atmosphere (southern hemisphere) indicates large amplitudes and irregularities due to the disturbances produced by upward propagating waves which prevail in the polar winter atmosphere. These characteristic differences between the two polar atmospheres are also evident in the vertical distributions of temperature and wind observed by balloons and rocker soundings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号