首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
DMFCs用SPEEK/SiOx-S复合质子交换膜   总被引:1,自引:0,他引:1       下载免费PDF全文
A sulfonated poly(ether ether ketone) (SPEEK) membrane with a fairly high degree of sulfonation (DS) can swell excessively and even dissolve at high temperature. To solve these problems, insolvable functionalized silica powder with sulfonic acid groups (SiOx-S) was added into the SPEEK matrix (DS 55.1%) to prepare SPEEK/ SiOx-S composite membranes. The decrease in both the swelling degree and the methanol permeability of the membranes was a dose-dependent result of addition of the SiOx-S powder. Pure SPEEK membrane swelled 52.6% at 80°C, whereas the SPEEK/SiOx-S (15%, by mass) membrane swelled only 27.3% at the same temperature. From room temperature to 80℃, all SPEEK/SPEEK/SiOx-S composite membranes had methanol permeability of about one order of magnitude lower than that of Nafion115. Compared with pure SPEEK membranes, the addition of the SiOx-S powder not only leads to higher proton conductivity, but also increases the dimensional stability at higher temperatures, and greater proton conductivity can be achieved at higher temperature. The SPEEK/SiOx-S (20%, by mass) membrane could withstand temperature up to 145°C, at which in 100% relative humidity (RH) its proton conductivity exceeded slightly that of Nafion115 membrane and reached 0.17 S•cm-1, while pure SPEEK mem-brane dissolved at 90°C. The SPEEK/SiOx-S composite membranes are promising for use in direct methanol fuel cells because of their good dimensional stability, high proton conductivity, and low methanol permeability.  相似文献   

2.
Hydrophilic poly(vinyl butyral) (PVB)/Pluronic F127 (F127) blend hollow fiber membranes were prepared via thermally induced phase separation (TIPS), and the effects of blend composition on the performance of hydrophilic PVB/F127 blend hollow fiber membrane were investigated. The addition of F127 to PVB/polyethylene glycol (PEG) system decreases the cloud point temperature, while the cloud point temperature increases slightly with the addition of F127 to 20% (by mass) PVB/F127/PEG200 system when the concentration of F127 is not higher than 5% (by mass). Light scattering results show that the initial inter-phase periodic distance formed from the phase separation of 20% (by mass) PVB/F127/PEG200 system decreases with the addition of F127, so does the growth rate during cooling process. The blend hollow fiber membrane prepared at air-gap 5mm, of which the water permeability increases and the rejection changes little with the increase of F127 concentration. For the membrane prepared at zero air-gap, both water permeability and rejection of the PVB/F127 blend membrane are greater than those of PVB membrane, while the tensile strength changes little. Elementary analysis shows that most F127 in the polymer solution can firmly exist in the polymer matrix, increasing the hydrophilicity of the blend membrane prepared at air-gap of 5mm.  相似文献   

3.
Several pervaporation membranes, cellulose acetate (CA), polyvinylbutyral (PVB), poly(MMA-co-AA), MMA-AA-BA, CA/PVB blend and CA/poly(MMA-co-AA) blend, were prepared, and their pervaporation properties were evaluated by separation of methanol/C5 or methanol/MTBE (methyl tert-butyl ether). The results shows that the CA composite membrane has a high separation performance (flux Jmenthanol =350g.m-2.h-1 and separation factor a > 400) for methanol/C5 mixtures, and the pervaporation characteristics of MMA-AA-BA copolymer membranes changes with the ratio of copolymer. For CA/poly(MMA-co-AA) blend membrane, the pervaporation performance is improved in comparison with CA or poly(MMA-co-AA) membrane. From the experiment of CA/PVB blend membranes for methanol/MTBE mixture, it is found that the compatibility of blends may affect the separation features of blend membrane.  相似文献   

4.
A new amphoteric membrane was prepared by blending long-side-chain sulfonated poly(2,6-dimethyl-1,4-phenylene oxide)(S-L-PPO) and polybenzimidazole(PBI) for vanadium redox flow battery(VRFB) application.An acid–base pair structure formed between the imidazole of PBI and sulfonic acid of S-L-PPO resulted in lowered swelling ratio. It favors to reduce the vanadium permeation. While, the increased sulfonic acid concentration ensured that proton conductivity was still at a high level. As a result, a better balance between the vanadium ion permeation(6.1 × 10-9 cm~2·s~(-1)) and proton conductivity(50.8 m S·cm~(-1)) in the S-L-PPO/PBI-10% membrane was achieved. The VRFB performance with S-L-PPO/PBI-10% membrane exhibited an EE of 82.7%, which was higher than those of pristine S-L-PPO(81.8%) and Nafion 212(78.0%) at 120 m A·cm~(-2). In addition, the S-LPPO/PBI-10% membrane had a much longer self-discharge duration time(142 h) than that of Nafion 212(23 h).  相似文献   

5.
This paper reports on ¬¬¬a new microporous composite silica membrane prepared via acid-catalyzed polymeric route of sol-gel method with tetraethylorthosilicate (TEOS) and a bridged silsesquioxane [1, 2-bis(triethoxysilyl)ethane, BTESE] as precursors. A stable nano-sized composite silica sol with a mean volume size of ~5 nm was synthesized. A 150 nm-thick defect-free composite silica membrane was deposited on disk support consisting of macroporous α-Al2O3 and mesoporous γ-Al2O3 intermediate layer by using dip-coating ap-proach, followed by calcination under pure nitrogen atmosphere. The composite silica membranes exhibit molecular sieve properties for small gases like H2, CO2, O2, N2, CH4 and SF6 with hydrogen permeances in the range of (1-4)107 mol•m2•s1•Pa1 (measured at 200 C, 3.0×105 Pa). With respect to the membrane calcined at 500 C, it is found that the permselectivities of H2 (0.289 nm) with respect to N2 (0.365 nm), CH4 (0.384 nm) and SF6 (0.55 nm) are 22.9, 42 and >1000, respectively, which are all much higher than the corresponding Knudsen values (H2/N2 3.7, H2/CH4 2.8, and H2/SF6 8.5).  相似文献   

6.
Polybenzimidazole(PBI) is a kind of proton transport membrane material, and its ion conductivity is a key factor affecting its application in vanadium redox flow batteries(VRFBs). The casting solvent of PBI has a significant influence on the acid doping level of PBI membranes which is closely related to ionic conductivity. In this paper, 3,3′-diaminobenzidine(DABz) and 4,4′-Dicarboxydiphenylether(DCDPE) were used as raw materials by solution condensation to prepare the PBI with ether bond groups. The chemical structure of PBI was determined by1~H NMR and FT-IR, and the prepared PBI had good solubility which can be dissolved in a variety of solvents. The PBI proton exchange membranes were prepared by solution coating with 5 different solvents of N,N-dimethylformamide(DMF), N,N-dimethylacetamide(DMAc), dimethyl sulfoxide(DMSO), 1-methyl-2-pyrrolidone(NMP), methane sulfonic acid(MSA). The effects of different solvents on the ion conductivity and physicochemical properties were discussed in detail. The results showed that the PBI membrane prepared by using MSA as solvent(the PBI + MSA membrane) exhibits high water uptake, acid doping level and low vanadium ion permeability. The VRFB assembled with the PBI + MSA membrane exhibited higher coulombic efficiency(CE) 99.87% and voltage efficiency(VE) 84.50% than that of the commercial Nafion115 membrane at100 m A·cm~(-2), and after 480 cycles, the EE value can still be maintained at 83.73%. The self-discharge time of a single battery was recorded to be as long as 1000 h. All experimental data indicated that MSA is the best solvent for casting PBI membrane.  相似文献   

7.
MXene is a novel 2D lamellar material with excellent hydrophilicity and permselectivity. MXene was introduced in the P84 polymer matrix and the matrix was crosslinked with triethylenetetramine(TETA) to improve the permselectivity and solvent resistance of the polyimide membrane. The membrane was characterized with SEM, AFM and ATR-FTIR, and effects of MXene content on the membrane morphology and separation performance are investigated. The membrane prepared with 18% P84 and 1% MXene shows high rejection(100%) to gentian violet(408) and high flux(268 L·m~(-2)·h~(-1)) at 0.1 MPa and ambient temperature. MXene endows the membrane with much water channel and denser functional layer which improves the membrane performance obviously. The membrane shows excellent solvent resistance to dimethylformamide(DMF), acetone and methanol after crosslinking with TETA during the 18 days of immersion.  相似文献   

8.
Densities and viscosities were measured as a function of composition for binary liquid mixture of diethylene glycol monoethyl ether [CH3CH2O(CH2)2O(CH2)2OH] + water from 293.15 to 333.15 K at atmospheric pressure, with a capillary pycnometer and Ubbelohde capillary viscometer respectively. From the experimental data, the excess molar volume VE, viscosity deviation η, and the excess energy of activation for viscous flow G*E were calculated. These data were correlated by the Redlich-Kister type equa-tions to obtain the coefficients and standard deviations. The results showed a strong molecular interaction between diethylene glycol monoethyl ether and water.  相似文献   

9.
One-dimensional heterogeneous plug flow model was employed to model an adiabatic fixed-bed reactor for the catalytic dehydration of methanol to dimethyl ether. Longitudinal temperature and conversion profiles predicted by this model were compared to those experimentally measured in a bench scale reactor. The reactor was packed with 1.5 mm γ-Al2O3 pellets as dehydration catalyst and operated in a temperature range of 543-603 K at an atmospheric pressure. Also, the effects of weight hourly space velocity (WHSV) and temperature on methanol conversion were investigated. According to the results, the maximum conversion is obtained at 603.15 K with WHSV of 72.87 h-1.  相似文献   

10.
Water management is of great importance to maintain performance and durability of proton exchange membrane fuel cells. This paper presents a novel proton exchange membrane (PEM) fuel cell with a humidification zone in the membrane electrode assembly (MEA) of each cell, in which the moisture of the cathode exhaust gas could transfer through the membrane to humidify anode or cathode dry gas. With a simple model, the relative humidity (RH) of the dry air exhaust from a membrane humidifier with 100% RH stream as a counter flow is calculated to be 60.0%, which is very close to the experimental result (62.2%). Fuel cell performances with hydrogen humidifying, air humidifying and no humidifying are compared at 50, 60 and 70˚C and the results indicate that humidifying is necessary and the novel design with humidifying zone in MEA is effective to humidify dry reactants. The hydrogen humidifying shows better performance in short term, while water recovered is limited and the stability is not as good as air hu-midifying. It is recommended that both air and hydrogen should be humidified with proper design of the humidifying zones in MEA and plates.  相似文献   

11.
采用流延法制备了聚醚砜(PES)含量不同的PES/磺化聚醚醚酮(SPEEK)共混膜。PES与SPEEK具有良好的相容性。所制备PES/SPEEK共混膜的含水率、溶胀度和甲醇透过系数均随PES含量的增加而降低。虽然共混膜的质子传导性能有所降低.但阻醇性能和溶胀性能提高,这说明PES/SPEEK共混膜是一种很好的直接甲醇燃料电池用固体高分子电解质膜材料。  相似文献   

12.
Blend membranes based on high conductive sulfonated poly(1,4‐phenylene ether‐ether‐sulfone) (SPEES) and poly(vinylidene fluoride) (PVDF) having excellent chemical stability were prepared and characterized for direct methanol fuel cells. The effects of PVDF content on the proton conductivity, water uptake, and chemical stability of SPEES/PVDF blend membranes were investigated. The morphology, miscibility, thermal, and mechanical properties of blend membranes were also studied by means of scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA) measurements. The blend membrane containing 90 wt.% SPEES (degree of sulfonation – DS = 72%) and 10 wt.% PVDF (Mw = 180,000) exhibits optimum properties among various SPEES72/PVDF membranes. Addition of PVDF enhanced resistance of the SPEES membrane against peroxide radicals and methanol significantly without deterioration of its proton conductivity. It's proton conductivity at 80 °C and 100% relative humidity is higher than Nafion 115 while it's methanol permeability is only half of that of Nafion 115 at 80 °C. The direct methanol fuel cell performance of the SPEES membranes was better than that of Nafion 115 membrane at 80 °C.  相似文献   

13.
Sulfonated poly(ether ether ketone) (SPEEK) is a very promising alternative membrane material for direct methanol fuel cells. However, with a fairly high degree of sulfonation (DS), SPEEK membranes can swell excessively and even dissolve at high temperature. This restricts membranes from working above a high tolerable temperature to get high proton conductivity. To deal with this contradictory situation, insolvable zirconium tricarboxybutylphosphonate (Zr(PBTC)) powder was employed to make a composite with SPEEK polymer in an attempt to improve temperature tolerance of the membranes. SPEEK/Zr(PBTC) composite membranes were obtained by casting a homogeneous mixture of Zr(PBTC) and SPEEK in N,N-dimethylacetamide on a glass plate and then evaporating the solvent at 60°C. Many characteristics were investigated, including thermal stability, liquid uptake, methanol permeability and proton conductivity. Results showed significant improvement not only in temperature tolerance, but also in methanol resistance of the SPEEK/Zr(PBTC) composite membranes. The membranes containing 30 wt-% ∼ 40 wt-% of Zr(PBTC) had their methanol permeability around 10−7 cm2·s−1 at room temperature to 80°C, which was one order of magnitude lower than that of Nafion?115. High proton conductivity of the composite membranes, however, could also be achieved from higher temperature applied. At 100% relative humidity, above 90°C the conductivity of the composite membrane containing 40 wt-% of Zr(PBTC) exceeded that of the Nafion?115 membrane and even reached a high value of 0.36 S·cm−1 at 160°C. Improved applicable temperature and high conductivity of the compositemembrane indicated its promising application inDMFC operations at high temperature. __________ Translated from Acta Polymerica Sinica, 2007, (4): 337–342 [译自:高分子学报]  相似文献   

14.
Novel composite sulfonated poly(ether sulfone)(SPES)/phosphotungstic acid (PWA)/attapulgite (AT) membranes were investigated for direct methanol fuel cells (DMFCs). Physical–chemical properties of the composite membranes were characterized by FTIR, DSC, TGA, SEM‐EDX, water uptake, tensile test, proton conductivity, and methanol permeability. Compared with a pure SPES membrane, PWA, and AT doping in the membrane led to a higher thermal stability and glass transition temperature (Tg) as revealed by TGA and DSC. Tensile test indicated that lower AT content (3%) in the composite can significantly increase the tensile strength, while higher AT loading demonstrated a smaller contribution on strength. Proper PWA and AT loadings in the composite membranes can increase the proton conductivity and lower the methanol cross‐over. The proton conductivity of the SPES‐P‐A 10% composite membrane reached 60% of the Nafion 112 membrane conductivity at room temperature while the methanol permeability was only one‐fourth of that of Nafion 112 membrane. This excellent performances of SPES/PWA/AT composite membranes could indicate a potential feasibility as a promising electrolyte for DMFC. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Development of alternate materials to Nafion, based on ionically conducting polymers and their blends is important for the wider applications of proton exchange membrane fuel cells. In this work, blends of sulfonated poly(ether ether ketone) (SPEEK) with poly(ether sulfone) (PES) are investigated. SPEEK with various ion exchange capacity (IEC) was prepared and blended with PES, which is nonionic and hydrophobic in nature. A comparative study of the water uptake, proton conductivity, and thermo‐mechanical characteristics of SPEEK and the blend membranes as a function of the IEC is presented. Addition of PES decreases the water uptake and conductivity of SPEEK. Chemical and thermal stability and mechanical properties of the membrane improve with the addition of PES. The effect of water content on the thermo‐mechanical properties of membranes was also studied. The morphology of blend membranes was studied using SEM to understand the microstructure and miscibility of the components. On the basis of the results, a plausible microstructure of the blends is presented, and is shown to be useful in understanding the variation of different properties with blending. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
Composite proton exchange membranes are prepared by solvent casting via the incorporation of molecular sieves 3A, 4A, and 5A into the sulfonated poly(ether ketone ether sulfone) (S-PEKES) at the sulfonation degree of 0.66, with varying the ratio at of 3%, 6%, 9%, and 12% v/v. The influences of type and amount of the molecular sieves on the proton conductivity, methanol permeability, structural, thermal, and mechanical stabilities of the membranes are investigated. The composite membranes are characterized by FTIR, TGA, LCR meter, and GC techniques. All properties of the composite membrane are compared with the pristine S-PEKES and Nafion 117 membrane.  相似文献   

17.
Mixed matrix membranes based on zeolite 4A‐methane sulfonic acid (MSA)‐sulfonated poly(ether ether ketone) (SPEEK) are evaluated as a potential polymer electrolyte membrane (PEM) for direct methanol fuel cells (DMFCs). Ion‐exchange capacity, sorption of water, and water–methanol mixture, proton conductivity, and methanol permeability for the mixed‐matrix membranes have been extensively investigated. The mixed‐matrix membranes are also characterized for their cross‐sectional morphology, mechanical, and thermal properties. DMFCs employing SPEEK‐MSA (20 wt.%) blend, zeolite 4A (4 wt.%)‐SPEEK‐MSA (20 wt.%) mixed matrix membranes deliver peak power densities of 130 and 159 mW cm–2, respectively; while a peak power density of only 95 mW cm–2 is obtained for the DMFC employing pristine SPEEK membrane at 70 °C. The results showed that these SPEEK based mixed matrix membranes exhibit higher DMFC performance and lower methanol permeability in comparison to Nafion‐117 membrane.  相似文献   

18.
Song Xue 《Polymer》2006,47(14):5044-5049
Blend membranes were obtained by solution casting from poly(vinylidene fluoride) (PVDF) and sulfonated poly(ether ether ketone) (SPEEK) in N,N-dimethylacetamide (DMAc). DSC and XRD were used to characterize the structure of the blend membranes. The effect of PVDF content on the membrane properties was investigated. The methanol permeability, water uptake and the swelling ratio of blend membranes decreased with the increase of PVDF content. Though the proton conductivity decreased upon the addition of PVDF, they were still comparable to that of Nafion® 117 membrane. Higher selectivities were also found for most blend membranes in comparison with Nafion® 117 membrane. The effect of methanol concentration on solution uptake, swelling ratio and methanol permeability of the blend membranes was also studied.  相似文献   

19.
以二氧化硅和磷钨酸改性磺化聚醚醚酮制得一种新型磺化聚醚醚酮复合膜。复合膜中杂多酸仍然保持着Keggin型PW12O430-阴离子的特征结构,二氧化硅和磷钨酸以无定形状态均匀分散于复合膜中。磷钨酸/二氧化硅/磺化聚醚醚酮复合膜的阻醇性能优于Nafion115;质子导电性能随着温度的提高有所增加。复合膜在磷钨酸中具有良好的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号