首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
60Si2Mn弹簧钢热变形行为研究   总被引:1,自引:0,他引:1  
采用Gleeble-3800热模拟试验机对60Si2Mn弹簧钢进行热压缩实验,研究了试样在变形温度为900~1000℃、应变速率为0.5~10s-1条件下的动态再结晶行为.结果表明,在900~1000℃变形,不同变形速率条件下试样均发生了明显的动态再结晶,变形温度对再结晶的影响大于应变速率.本实验条件下60Si2Mn弹簧钢形变激活能为85.15kJ/mol.  相似文献   

2.
利用Gleeble-3800热模拟试验机,得到了60Si2CrVAT弹簧钢在变形温度900~1150℃、应变速率0.1~10 s~(-1)、变形量为56%下的热压缩变形的真应力-真应变曲线。以Avrami方程为基础,利用应力-应变曲线和平均晶粒等数据,通过线性回归的分析方法,建立了动态再结晶临界应变模型、动态再结晶体积百分数模型和平均晶粒尺寸模型。采用DEFORM进行动态再结晶数值模拟。结果表明:模拟结果与实验结果吻合较好,这说明建立的动态再结晶模型有较高的准确性,可用于热变形过程的模拟和优化。  相似文献   

3.
7A85铝合金热压缩流变行为与本构方程研究   总被引:1,自引:0,他引:1  
通过在Gleeble-1500热模拟试验机上进行高温压缩试验,研究了7A85铝合金在变形温度为250~450℃、应变速率为0.001~1 s-1条件下的高温流变行为。研究表明,7A85铝合金在热压缩过程中发生了明显的动态回复与动态再结晶;变形抗力随温度的降低而增加,当温度低于300℃时变形抗力增加明显,同时变形抗力随应变速率的增大而增大;应变速率和流变应力之间满足指数关系,温度和流变应力之间满足Arrhenius方程;采用线性回归方法获得了7A85铝合金高温条件下流变应力的本构方程。  相似文献   

4.
利用Gleeble-1500D热模拟试验机对锻态工业纯钛TA1进行高温拉伸试验,其变形温度为800~1050℃,变形速率为0.01~1 s-1,并对工业纯钛TA1进行变形抗力研究,分析了变形温度、应变速率和变形程度对变形抗力的影响。结果表明,变形抗力曲线主要以动态回复、再结晶软化为主要特征。温度对变形抗力的影响是以工业纯钛TA1相变点为界限。800和1000℃时,随应变速率增大,变形抗力先增大后减小;变形温度为850、900和1050℃时,变形抗力随应变速率增大而增大。变形抗力随变形程度增加,其变化呈两种趋势。  相似文献   

5.
利用Gleeble 3500热模拟试验机对Aermet100超高强度钢进行了热模拟压缩试验,分析了不同变形参数下合金的流变行为,获得了合金在变形温度800~1040℃、应变速率0.01~10 s-1条件下的动态再结晶变化规律。结果表明:Aermet100钢动态再结晶程度随变形温度的升高而增大,随应变速率的增大而减小。根据试验数据,得出了动态再结晶程度为50%时的应变值ε0.5与Zener-Hollomon参数的关系模型,并建立了Aermet100钢热变形中的动态再结晶百分数模型,与试验值吻合较好。  相似文献   

6.
采用Gleeble-3800热模拟试验机,对Incoloy825高温合金在应变为0.92、温度为950~1150℃和应变速率为0.001~1 s-1条件下进行单道次压缩试验。依据真应力-真应变曲线建立了动态再结晶临界方程和动态再结晶动力学模型。结果表明,Incoloy825高温合金热变形对温度和应变速率较为敏感,真应力-真应变曲线整体满足硬化-软化-稳态的流变过程,动态再结晶是Incoloy 825高温合金材料的主要软化机制。在热变形过程中,动态再结晶临界应变随变形温度的升高和应变速率的降低呈减小趋势。对动态再结晶动力学模型进行分析发现,动态再结晶百分含量随变形温度的升高和应变速率的降低而增大,表明高变形温度和低应变速率对动态再结晶具有促进作用。  相似文献   

7.
12MnNiVR钢的高温变形行为及其数学模型   总被引:1,自引:0,他引:1  
用Gleeble-1500热模拟试验机研究高强度12MnNiVR钢的高温变形行为,分析不同变形温度、变形速率、变形程度对12MnNiVR钢的变形抗力的影响.结果表明,当应变量小于0.4时,随试验钢应变增加,变形抗力增加明显,当应变量大于0.4时,应力的变化趋于平缓.变形抗力随变形温度的升高而降低,随变形速率的增加而增大,归因于高温变形过程加工硬化与动态回复和再结晶软化的综合作用.建立其变形抗力的数学模型并用SPSS 方法进行回归,该模型具有良好的曲线拟合特性,计算结果与实测值基本吻合.  相似文献   

8.
采用Gleeble-1500D热模拟试验机对Al-0.62Mg-0.73Si铝合金进行了热压缩试验,研究了变形温度673~793K、变形速率0.001~1 s~(-1)下材料的动态再结晶行为。采用临界条件动力学模型确定了该材料在不同热变形参数下的临界条件,依据修正的Avrami方程建立了Al-0.62Mg-0.73Si铝合金动态再结晶体积分数模型,同时分析了材料热变形后的组织演变规律。结果表明:材料在热变形过程中,真应力随变形温度的降低而升高,随应变速率的下降而减小;变形温度与应变速率的升高均能促进动态再结晶行为的发生;温度的升高能够有效地促进材料的软化,并提高动态再结晶晶粒的长大速度。  相似文献   

9.
采用DIL805A/T热模拟试验机研究了60Si2CrVAT弹簧钢在温度为900~1050℃、应变速率为0.001~1 s~(-1)条件下的高温变形行为。结果表明,在相同应变速率下,流变应力随变形温度的升高而降低,在同一温度下,流变应力随应变速率的增大而升高。使用修正的Arrhenius模型来描述60Si2Cr VAT弹簧钢高温拉伸变形时的本构方程,计算出变形激活能Q=331.21k J/mol,材料常数为A=3.176×10~(12),n=4.0643,a=0.01079 MPa~(-1),得到了高温拉伸本构方程。  相似文献   

10.
《铸造技术》2017,(10):2393-2397
对铸态GH4169合金不同部位试样进行了不同热压缩试验,利用扫面电子显微镜、金相显微镜、EBSD研究了该合金在不同热压缩条件下的变形行为与枝晶组织的关系,并探讨了其机理。结果表明:高温热变形过程中,铸态GH4169合金的变形抗力与形变量、应变速率以及变形温度有关。变形量增大、应变速率增高、温度降低会导致变形抗力增大。当变形量为45%时,高应变速率和高温对动态再结晶更加有利。当加载方向与一次枝晶方向垂直时,材料的热变形机制为二次枝晶滑动,由此会导致应变速率敏感因子变大。初始组织为等轴枝晶的样品最有利于动态再结晶,中心粗柱状晶样品具有最大的变形抗力,而边缘细柱状晶样品再结晶比例最低、变形抗力最小。  相似文献   

11.
在Gleeble-1500热模拟试验机上对Ti-Mo-V微合金化钢进行单道次热模拟压缩试验,分析了变形温度、应变速率、变形程度等对试验钢热变形行为的影响。结果表明,在一定条件下,流变应力随变形温度的升高而降低,随应变速率的增加而增大。当应变速率大于10 s-1和变形温度小于1000 ℃时,发生动态回复;当应变速率小于1 s-1和变形温度大于850 ℃时,发生动态再结晶。在Sellars -Tegart方程的基础上,建立了试验钢加工硬化-动态回复和动态再结晶精度较高流变应力模型,并采用回归的流变应力模型预报了Ti-Mo-V微合金化钢的实际轧制压力,预报值与实测值吻合良好。  相似文献   

12.
采用Thermecmastor-Z热模拟试验机在变形温度为200~520℃、应变速率为2~60 s-1条件下对AZ31B镁合金厚板进行热压缩变形试验,压缩变形量为60%。结合变形后的微观组织以及热压缩真应力-真应变曲线,分析应变速率和变形温度等工艺参数对其微观组织演变的影响。结果表明:当变形温度高于320℃时,AZ31B镁合金的真应力-真应变曲线呈现典型的动态再结晶特性。当应变速率一定时,流变应力随温度升高而降低;当变形温度一定时,流变应力在高温低应变速率(低于15 s-1)下随应变速率增大而增大。变形后的微观组织显示,压缩变形过程中发生了明显的动态再结晶,动态再结晶体积分数随应变速率的增加而增大。另外,变形组织的均匀性受变形温度的影响十分显著。在热压缩实验的基础上,在温度为300~330℃时对板材进行单道次大压下量的热轧,获得的板材具有均匀细小的晶粒及优异的力学性能。  相似文献   

13.
为了研究某厂热连轧纯钛卷精轧段的变形抗力问题,根据工业生产的实际轧制工艺,确定该精轧段的轧件形变行为条件为:变形温度范围为700~800℃,应变速率为5~25 s~(-1),最大变形量为0.8,对纯钛进行热压缩试验。结果表明:纯钛的流变应力随变形温度升高而降低,随应变速率升高而升高,变形机制受到温度和应变速率的影响较大,温度为700℃、应变速率为1 s~(-1)时主要以动态回复为主,随着温度和应变速率的增加,动态再结晶程度不断增加,当温度为800℃、应变速率为20 s~(-1)时,再结晶比较充分,组织均匀性良好。根据热模拟实验得到的真应力-应变数据,同时考虑化学成分的影响,基于Johnson-Cook模型建立了能够综合反映诸多因素的变形抗力模型,由变形抗力模型得到的轧制力计算值与实际值的比较验证了模型可靠性,为热连轧纯钛卷精轧生产的工艺控制提供了有效依据。  相似文献   

14.
王帅  赵阳  邵国华  陈礼清 《轧钢》2021,38(6):42-47
利用MMS-200热模拟试验机对一种中碳高硅弹簧钢进行了单道次热压缩试验,研究了该钢在变形温度为900~1 100 ℃及应变速率为0.1~10 s-1条件下的热变形行为,建立了应变补偿的Arrhenius流变应力预测模型。结果表明,应变速率和变形温度对该弹簧钢的奥氏体动态再结晶过程有显著影响。当变形速率为0.1、5、10 s-1时,在所有变形温度下均发生奥氏体动态再结晶;当变形速率为1 s-1且变形温度超过950 ℃时,奥氏体发生动态再结晶,其热变形激活能为445.5 kJ/mol。通过对真应力的预测值与试验值的对比,得出应变补偿Arrhenius模型具有准确性和预测性,其相关系数为0.976,平均相对误差为4.73%。  相似文献   

15.
在Gleeble 3500多功能热模拟试验机上,对高强DP980钢进行了单道次压缩实验,研究了该钢在1323~1423 K和0. 05~10 s-1变形条件下的热变形行为,分析了变形温度和变形速率对流变应力曲线的影响,揭示了变形软化机制,分析了在热变形过程中微观组织的演变规律,分阶段建立了热压缩变形抗力本构模型。结果表明:流变应力对变形温度和应变速率都很敏感,随变形温度的增加和变形速率的减小而减小,低应变速率下呈动态再结晶型软化机制;应变速率ε· 0. 1 s-1时,呈动态回复型软化机制。同一变形温度下,低应变速率易于该钢中奥氏体再结晶的启动;同一变形速率下,变形温度越高,奥氏体再结晶现象越明显。分阶段所建立的本构模型预测值与实验值的相关系数达到0. 9978,平均相对误差绝对值为2. 67%,证明此模型具有较高精度。  相似文献   

16.
在Gleebe-1500热力模拟机上,采用单道次热压缩实验,研究了不同变形速率和不同变形温度下弹簧钢50Cr V4的动态再结晶行为。结果表明:钢种在较高温度和较低应变速率下,动态再结晶更容易发生。采用回归法计算出动态再结晶的变形激活能和应变指数分别为378.612 k J/mol和4.92,由此建立动态再结晶峰值应变、稳态应变和临界应变模型。  相似文献   

17.
在THERMECMASTER-Z型热模拟试验机上,对锻态TB6钛合金在真应变为0.92、变形温度为800℃~1150℃、应变速率为0.001s-1~1s-1的条件下进行等温恒应变速率压缩试验,分析合金在β单相区条件下的热变形特点,并观察金相组织。结果表明,应变速率对合金流动应力的影响较显著;而变形温度对合金流动应力的影响在较高应变速率时较大,在较低应变速率时较小。动态再结晶晶粒尺寸和动态再结晶体积分数,随温度的升高而增大,随应变速率的增大而减小。从晶粒细化和动态再结晶组织均匀性考虑,当真应变为0.92时,变形温度选择在950℃~1050℃之间,应变速率选择在0.01s-1为宜。  相似文献   

18.
李佳  张秀芝  刘建生 《锻压技术》2013,38(4):148-151
应用Gleeble-1500D热模拟试验机对低合金高强度结构钢(HLSA)Q345E进行高温单道次热压缩试验,研究了不同变形参数(变形温度T、变形速率ε和变形量ε)下Q345E钢的变形抗力,分析了各变形参数对该钢变形抗力和动态再结晶的影响。结果表明:随着应变速率的提高和变形温度的降低,Q345E钢的流变应力显著增大;在应变速率较低、高温时,易发生动态再结晶;在应变速率较高、低温时,不发生动态再结晶。建立了Q345E钢热态变形过程中的高温塑性本构方程和动态再结晶图,为科学设计和有效控制Q345E钢的成形工艺提供理论依据。  相似文献   

19.
利用Gleeble-3500热-力模拟试验机,在变形温度为750~1 200℃、应变速率为0.01~10 s~(-1)、应变量为0.7的条件下对Q345D钢进行单道次压缩试验,得到其真应力-真应变曲线,分析了变形温度、应变速率和变形程度对变形抗力的影响。结果表明,降低变形温度和提高变形速率,均可使Q345D钢的变形抗力增大;只有在较低的变形速率和较高的变形温度下,Q345D钢才发生动态再结晶。通过非线性拟合,建立了Q345D钢的变形抗力模型,并与试验变形抗力进行对比分析,结果表明该模型具有较高的拟合精度。  相似文献   

20.
为研究2A14铝合金的动态再结晶模型和热变形组织演变规律,在Gleeble-3500试验机上对2A14铝合金进行等温压缩,试验温度为573~773 K,应变速率为0.01~10 s~(-1),压下量为60%,变形后淬火保留高温组织。通过其流变应力曲线,建立临界应变和峰值应变的关系,并建立动态再结晶体积分数预测模型。通过对其组织晶粒演变分析,发现动态再结晶晶粒与变形温度和速率关系密切,会随着温度的增高,应变速率的降低而增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号