首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolism of wild-type Arabidopsis thaliana L. and its mutant TC265 were compared in order to reveal the role of the chloroplast glucose transporter. Plants were grown in a 12-h photoperiod. From 20 to 40 days after germination, starch per gram fresh weight of shoot in the mutant was four times that in the wild type. The extent of this difference did not alter during this period. Stereological analysis showed that the chloroplasts in the mutant were larger than those in the wild type; the thylakoids appeared to be distorted by the high starch content. [U-14C]Glucose and [U-14C]glycerol were supplied, separately, to excised leaves in the dark. [U-14C]Glucose was a good precursor of sucrose in the wild type and mutant; [U-14C]glycerol was a poor precursor of sucrose in both. The distribution of 14C in the wild type was used to calculate that the net flux was from hexose monophosphates to triose phosphates, not vice versa. During the first 4 h of the night the sugar content (75% sucrose, 20% glucose) of the leaves of the mutant dropped sharply, and at all times during the night it was less than that of the wild-type leaves. This drop in sugar coincided with a decrease in the rate of respiration. The growth rate of the mutant was less than that of the wild type. Addition of sucrose restored the rate of respiration at night and increased the rate of growth. It is argued that a major function of the glucose transporter in Arabidopsis chloroplasts is export of the products of starch breakdown that are destined for sucrose synthesis at night.We thank Professor C.R. Somerville for his generous gift of seed of the Arabidopsis mutant TC265. We are also grateful to Mr B. Chapman for assistance with the preparation of the sections for electron microscopy. R.N.T. thanks the Science and Engineering Research Council for a studentship.  相似文献   

2.
A quantitative triterpene analysis was made of latex stem tissue of Euphorbia lathyris. Young plants seedlings of E. lathyris were incubated with various labelled precursors. Incorporation into triterpenes was obtained from [2-14C]mevalonic acid, [1-14C]acetate, [3-14C]pyruvate, [U-14C]sucrose, [U-14C]glucose, [U-14C]xylose, [U-14C]glyoxylate, [2,3-14C]succinic acid, [1-14C]glycerol [U-14C]serine. Both sugars tyrosine appeared to be effective precursors in DOPA synthesis inside the laticifers. Exogenously supplied mevalonic acid was only involved in triterpene synthesis outside the laticifers. GC-RC of triterpenes synthesized from [U-14C]glucose revealed the origin of these compounds in the latex. The labelled triterpenes obtained after incorporation of the other mentioned labelled precursors were only partly synthesized in the laticifers. For quantitative data on latex triterpene synthesis seedlings were incubated with [U-14C]sucrose, [U-14C]glucose, [U-14C]xylose [1-14C]acetate in the presence of increasing amounts of unlabelled substrate. From the amount of 14C incorporated into the triterpenes the amount of substrate directly involved in triterpene synthesis was calculated, as was the absolute triterpene yield. Sucrose showed the highest triterpene yield, equivalent to the daily increase of the triterpene content of growing seedlings. The possible significance of the other precursors in triterpene synthesis in the laticifers is discussed.  相似文献   

3.
Various solutions of labeled precursors were absorbed by the cotyledons of etiolated Euphorbia lathyris L. seedlings. Incorporation of 14C into triterpenes from [2-14C]mevalonic acid, [1-14C]acetate, [3-14C]pyruvate, [U-14C]glyoxylate, [U-14C]glycerol, [U-14C]serine, [U-14C]xylose, [U-14C]glucose, and [U-14C]sucrose was obtained. The [14] triterpenes synthesized from [14C] sugars were mainly of latex origin. [14C]mevalonic acid was only involved in terpenoid synthesis outside the laticifers. Exogenously supplied glyoxylate, serine, and glycerol were hardly involved in lipid synthesis at all. The 14C-distribution over the various triterpenols was consistent with the mass distribution of these constituents in gas liquid chromatography when [14C]sugars, [14C]acetate, and [14C]pyruvate were used. These precursors were supplied to the seedlings in the presence of increasing amounts of unlabeled substrates. The amount of substrate directly involved in lipid synthesis as well as the absolute triterpenol yield was calculated from the obtained [14C]triterpenols. The highest yield was obtained in the sucrose incorporated seedlings, being 25% of the daily increase of latex triterpenes in growing seedlings.  相似文献   

4.
Fluxes of carbohydrate metabolism in ripening bananas   总被引:1,自引:0,他引:1  
The major fluxes of carbohydrate metabolism were estimated during starch breakdown by ripening bananas (Musa cavendishii Lamb ex Paxton). Hands of bananas, untreated with ethylene, were allowed to ripen in the dark at 21° C. Production of CO2 and the contents of starch, sucrose, glucose and fructose of intact fruit were determined for a period of 10 d that included the climacteric. The detailed distribution of label was determined after supplying the following to cores of pulp from climacteric fruit: [U-14C]-, [1-14C]-, [3,4-14C]-and [6-14C]glucose, [U-14C]glycerol, 14CO2. The data obtained were used to estimate the following fluxes, values given as mol hexose · (g FW)–1 · h–1 in parenthesis: starch to hexose monophosphates (5.9) and vice versa (0.4); hexose monophosphates to sucrose (7.7); sucrose to hexose (4.7); hexose to hexose monophosphate (3.8); glycolysis (0.5–1.6); triose phosphate to hexose monophosphates (0.14); oxidative pentose-phosphate pathway (0.48); CO2 fixation in the dark (0.005). These estimates are related to our understanding of carbohydrate metabolism during ripening.We both thank Mr Richard Trethewey for his constructive criticism: S.A.H. thanks the Managers of the Broodbank Fund for a fellowship.  相似文献   

5.
Steven A Hill  Tom ap Rees 《Planta》1995,196(2):335-343
The effect of exogenous glucose on the major fluxes of carbohydrate metabolism in cores of climacteric fruit of banana (Musa cavendishii Lamb ex Paxton) was determined with the intention of using the effects in the application of top-down metabolic control analysis. Hands of bananas, untreated with ethylene, were allowed to ripen in the dark at 21 °C. Cores were removed from climacteric fruit and incubated in 100 or 200 mM glucose for 4 or 6 h. The rates of starch breakdown, sucrose and fructose accumulation and CO2 production were measured. The steady-state contents of hexose monophosphates, adenylates and pyruvate were determined. In addition, the detailed distribution of label was determined after supply of the following: [U-14C]-, [1-14C]-, [3,414C]and [6-14C]glucose, and [U-14C]glycerol. The data were used to estimate the major fluxes of carbohydrate metabolism. Supply of exogenous glucose led to increases in the size of the hexose-monophosphate pools. There was a small stimulation of the rate of sugar synthesis and a major increase in the rate of starch synthesis. Starch breakdown was inhibited. Respiration responded to the demand for ATP by sugar synthesis. The effect of glucose on fluxes and metabolite pools is discussed in relation to our understanding of the control and regulation of carbohydrate metabolism in ripening fruit.Abbreviations Glc6P glucose-6-phosphate - Glc1P glucose-1-phosphate - Fru6P fructose-6-phosphate - AEC adenylate energy charge We thank Geest Foods Group, Great Dunmow, Essex, UK for giving us the bananas. SAH thanks the managers of the Broodbank Fund for a fellowship.  相似文献   

6.
Effects of anaerobiosis on carbohydrate oxidation by roots of Pisum sativum   总被引:1,自引:0,他引:1  
The aim of this work was to discover the effects of anaerobiosis on the breakdown of sugars by the apical 6 mm of the roots of 5-day-old seedlings of Pisum sativum. Estimates of the maximum catalytic activities of alcohol dehydrogenase, lactate dehydrogenase, phosphoenolpyruvate carboxylase and NADP-specific malic enzyme showed them to be comparable to that of phosphofructokinase. Metabolism of sucrose-[U-14C] by excised apices was restricted by anoxia mainly to conversion to ethanol, CO2 alanine and glycolytic intermediates. Measurements of metabolites over a period of 240 min after transfer of excised apices to nitrogen showed a marked and continual accumulation of ethanol, a smaller continual accumulation of alanine, a small initial rise in lactate and no detectable accumulation of malate or pyruvate. The rates of CO2 production, of accumulation of ethanol and alanine, and of the labelling of these compounds by sucrose-[14C] declined markedly during the first 240 min of anaerobiosis. The conclusion is that under anaerobic conditions carbohydrate metabolism in the pea root apex is largely restricted to alcoholic fermentation, and, to a lesser degree, to alanine production.  相似文献   

7.
Steven A Hill  Tom ap Rees 《Planta》1995,197(2):313-323
The aim of this work was to determine the effects of hypoxia on the major fluxes of carbohydrate metabolism in climacteric fruit of banana (Musa cavendishii Lamb ex Paxton). Hands of bananas, untreated with ethylene, were allowed to ripen in air at 21°C in the dark. When the climacteric began, fruit were transferred to 15 or 10% oxygen and were analysed once the climacteric peak had been reached 8–12 h later. The rates of starch breakdown, sucrose, glucose and fructose accumulation, and CO2 production were determined, as were the contents of hexose monophosphates, adenylates and pyruvate. In addition, the detailed distribution of label was determined after supplying [U-14C]-, [1-14C]-, [3,4-14C]- and [6-14C]glucose, and [U-14C]glycerol to cores of tissue under hypoxia. The data were used to estimate the major fluxes of carbohydrate metabolism. There was a reduction in the rate of respiration. The ATP/ADP ratio was unaffected but there was a significant increase in the content of AMP. In 15% oxygen only minor changes in fluxes were observed. In 10% oxygen starch breakdown was reduced and starch synthesis was not detected. The rate of sucrose synthesis decreased, as did the rate of re-entry of hexose sugars into the hexose monophosphate pool. There was a large increase in both the glycolytic flux and in the flux from triose phosphates to hexose monophosphates. It is argued that the increase in these fluxes is due to activation of pyrophosphate: fructose-6-phosphate 1-phosphotransferase, and that this enzyme has an important role in hypoxia. The results are discussed in relation to our understanding of the control of carbohydrate metabolism in hypoxia.Abbreviations Glc6P glucose-6-phosphate - Glc1P glucose-1-phosphate - Fru6P fructose-6-phosphate - PPi inorganic pyro-phosphate We thank Geest Foods Group, Great Dunmow, Essex, UK for giving us the bananas. S.A.H. thanks the managers of the Brood bank Fund for a fellowship.  相似文献   

8.
Pretreatment of discs excised from developing tubers of potato (Solanum tuberosum L.) with 10 millimolar sodium fluoride induced a transient increase in 3-phosphoglycerate content. This was followed by increases in triose-phosphate, fructose 1,6-bisphosphate and hexose-phosphate (glucose 6-phosphate + fructose 6-phosphate + glucose 1-phosphate). The effect of fluoride is attributed to an inhibition of glycolysis and a stimulation of triose-phosphate recycling (the latter confirmed by the pattern of 13C-labeling [NMR] in sucrose when tissue was supplied with [2-13C]glucose). Fluoride inhibited the incorporation of [U-14C] glucose, [U-14C]sucrose, [U-14C]glucose 1-phosphate, and [U-14C] glycerol into starch. The incorporation of [U-14C]ADPglucose was unaffected. Inhibition of starch biosynthesis was accompanied by an almost proportional increase in the incorporation of 14C into sucrose. The inhibition of starch synthesis was accompanied by a 10-fold increase in tissue pyrophosphate (PPi) content. Although the subcellular localization of PPi was not determined, a hypothesis is presented that argues that the PPi accumulates in the amyloplast due to inhibition of alkaline inorganic pyrophosphatase by fluoride ions.  相似文献   

9.
P. Scott  R. L. Lyne  T. ap Rees 《Planta》1995,197(3):435-441
The aim of this work was to discover why barley (Hordeum vulgare L.) microspores die when cultured on media containing 40 mM sucrose but undergo embryogenesis on 40 mM maltose. Freshly isolated microspores were cultured for 6–24 h on media containing either [U-14C]maltose or [U-14C]sucrose at 40 mM, and the detailed distribution of 14C was determined. The amounts of glycolytic intermediates, ATP, ADP and AMP, in microspores were also measured. Cultures on sucrose differed from those on maltose in that the initial rate of metabolism was faster but declined rapidly, less 14C was recovered in polymers and more in alanine, there was extensive leakage of assimilated carbon, significant accumulation of ethanol and a lower adenylate energy charge. It is argued that microspores cultured on 40 mM sucrose die because they metabolize the sugar rapidly, become hypoxic and, as a result, accumulate large quantities of ethanol within the cells. Metabolism of maltose is slower and there is sufficient oxygen available to allow cells to survive in culture. Consequently some of the cultured cells undergo embryogenesis.P.S. thanks the Science and Engineering Research Council and Shell Research Ltd., Sittingbourne, for a Cooperative Award in Science and Engineering studentship.  相似文献   

10.
Radioactive polysaccharide was synthesized when uridine 5′-(α-d-[U-14C]apio-d-furanosyl pyrophosphate) (containing some uridine 5′-(α-d-[U-14C]xylopyranosyl pyrophosphate)) was incubated with a particulate enzyme preparation from Lemna minor. Characterization experiments established that the product: (i) was insoluble in methanol and water, (ii) contained d-[U-14C]apiose (75%) and d-[U-14C]xylose (25%), and (iii) was soluble in 1% ammonium oxalate. The material solubilized by ammonium oxalate (solubilized product): (i) was separated into five fractions by column chromatography with diethylaminoethyl-Sephadex (DEAE-Sephadex), (ii) contained [U-14C]apiobiose side chains that were removed by hydrolysis at pH 4, and (iii) was degraded by fungal pectinase. Both d-[U-14C]apiose residues of the [U-14C]apiobiose side chains were synthesized in vivo since radioactivity was distributed equally between the two residues. The presence of uridine 5′-(α-d-galactopyranosyluronic acid pyrophosphate) during synthesis of radioactive polysaccharide resulted in: (i) an increase in the incorporation of radioactive d-[U-14C]apiose into solubilized product, (ii) an increase in the ratio of d-[U-14C]apiose to d-[U-14C]xylose present in solubilized product, (iii) an increase in the amount of [U-14C]apiobiose plus d-[U-14C]apiose released from the solubilized product by hydrolysis at pH 4, and (iv) a tighter binding of the solubilized product to DEAE-Sephadex. These results show that apiogalacturonans similar to or the same as those synthesized by the intact plant were synthesized in the particulate enzyme preparation isolated from L. minor. [14C]Apiogalacturonans completely free of d-[U-l4C]xylose were not isolated. The [14C]apiogalacturonan with the least d-[U-14C]xylose still had 4.8% of its radioactivity present in d-[U-14C]xylose. The possibility remains that d-xylose is a normal constituent of the apiogalacturonans of the cell wall of L. minor.  相似文献   

11.
The effects of a penetrating (NEM) and a non-penetrating (PCMBS) sulfhydryl-specific reagent on proton extrusion, 86Rb and [U-14C]sucrose uptake by Vicia faba leaves have been studied. Proton extrusion was strongly or completely inhibited by 0.1 mM NEM. 86Rb and [U-14C]sucrose uptake were markedly reduced by NEM concentrations equal to or higher than 0.5 mM. Under our experimental conditions, PCMBS (1 mM) exerted a strong inhibition on [14C]sucrose uptake but did not inhibit proton extrusion and 86Rb uptake. The sensitivity of phloem loading to PCMBS is thought to be a consequence of sugar-carrier blockage and not of inhibition of the proton pump.Abbreviations CCCP carbonylcyanide-m-chlorophenylhydrazone - DES diethylstilbestrol - DCCD dicyclohexylcarbodiimide - FC Fusicoccin - NEM N-ethylmaleimide - PCMBS p-chloromercuribenzenesulfonic acid  相似文献   

12.
The aim of this work was to discover how leucoplasts from suspension cultures of soybean (Glycine max L.) oxidize hexose monophosphates. Leucoplasts were isolated from protoplast lysates on a continuous gradient of Nycodenz with a yield of 28% and an intactness of 80%. Incubation of the leucoplasts with 14C-labelled substrates led to 14CO2 production, that was dependent upon leucoplast intactness, from [U-14C]glucose 6-phosphate, [U-14C]glucose 1-phosphate, [U-14C] fructose 6-phosphate and [U-14C]glucose+ATP, but not from [U-14C]fructose-1,6-bisphosphate or [U-14C]triose phosphate. The yield from [U-14C]glucose 6-phosphate was at least four times greater than that from any of the other substrates. When [1-14C]-, [2-14C]-, [3,4-14C]-, and [6-14C]glucose 6-phosphate were supplied to leucoplasts significant 14CO2 production that was dependent upon leucoplast intactness was found only for [1-14C]glucose 6-phosphate. It is argued that soybean cell leucoplasts oxidize glucose 6-phosphate via the oxidative pentose phosphate pathway with very little recycling, and that in these plastids glycolysis to acetyl CoA is negligible.S.A.C. thanks the Science and Engineering Research Council for a research studentship.  相似文献   

13.
Labelling experiments in which high-specific-activity [U-14C]sucrose or [U-14C]hexoses were injected into potato (Solanum tuberosum L. cv. Desiree) tubers showed that within 1 d of detaching growing tubers from their mother plant, there is an inhibition of starch synthesis, a stimulation of the synthesis of other major cell components, and rapid resynthesis of sucrose. This is accompanied by a general increase in phosphorylated intermediates, an increase in UDP-glucose, and a dramatic decrease of ADP-glucose. No significant decline in the extracted activity of enzymes for sucrose degradation or synthesis, or starch synthesis is seen within 1 d, nor is there a significant decrease in sucrose, amino acids, or fresh weight. Over the next 7 d, soluble carbohydrates decline. This is accompanied by a decline in sucrose-synthase activity, hexose-phosphate levels, and the synthesis of structural cell components. It is argued that a previously unknown mechanism acting at ADP-glucose pyrophosphorylase allows sucrose-starch interconversions to be regulated independently of the use of sucrose for cell growth.  相似文献   

14.
l-Aspartate-[U-14C] was quickly metabolized in rice seedlings into amino acids, organic acids and sugars. On feeding simultaneously with ammonium for 2 hr, about 1% of the total soluble radioactivity was recovered as asparagine. Major amino acids labelled were aspartate, glutamate, glutamine and alanine in both shoots and roots. On the other hand, on feeding l-aspartate-[U-14C] to rice seedlings precultured in an ammonium medium, asparagine accounted for 35% of the total soluble radioactivity in the roots. Different labelling patterns in amino acids from those of non-precultured tissues were observed, and the main amino acids labelled in this case were asparagine and γ-aminobutyrate in the roots; glutamate, asparagine and glutamine in the shoots. It was observed in the roots that this increase of asparagine labelling was associated with a decrease of label in glutamate.  相似文献   

15.
P. Dittrich  K. Raschke 《Planta》1977,134(1):77-81
Epidermal strips with closed stomata were exposed to malic acid labelled with 14C either uniformly or in 4-C only. During incubation with [U-14C]malate, radioactivity appeared in products of the tricarboxylic-acid cycle and in transamination products within 10 min, in sugars after 2 h. Hardly any radioactivity was found in sugars if [4-14C]malate had been offered. This difference in the degree of labelling of sugars indicates that gluconeogenesis can occur in epidermal tissue, involving the decarboxylation of malate. Epidermis incubated with labelled malate was hydrolyzed after extraction with aqueous ethanol. The hydrolysate contained glucose as the only radioactive product, indicating that starch had been formed from malate. Microautoradiograms were black above stomatal complexes, showing that the latter were sites of starch formation. In order to follow the fate of malate during stomatal closure, malate was labelled in guard cells by exposing epidermes with open stomata to 14CO2 and then initiating stomatal closure. Of the radioactive fixation products of CO2 only malate was released into the water on which the epidermal samples floated; the epidermal strips retained some of the malate and all of its metabolites. In the case of rapid stomatal closure initiated by abscisic acid and completed within 5 min, 63% of the radioactivity was in the malate released, 22% in the malate retained, the remainder in aspartate, glutamate, and citrate. We conclude that during stomatal closing guard cells can dispose of malate by release, gluconeogenesis, and consumption in the tricarboxylic-acid cycle.Abbreviations ABA abscisic acid - NAD nicotinamide adenine dinucleotide - NADP nicotinamide adenine dinucleotide phosphate - PEP phosphoenolpyruvate  相似文献   

16.
When [U-14C]palmitate was added to a culture of B. megaterium that had been grown at 35°, transferred to 20° and treated with cerulenin, label was initially incorporated into lysophosphatidyl glycerol. The labeled lyso derivative, in turn, was converted to phosphatidyl glycerol, apparently by esterification of the 2-position with endogenous acyl groups. Labeled lysophosphatidyl glycerol synthesis at 20° was observed only when a culture was treated with cerulenin prior to the addition of [U-14C]palmitate. When [U-14C]palmitate was added before cerulenin, labeled lysophosphatidyl glycerol formation was not detected. When chloramphenicol was added with cerulenin at the time of culture transfer from 35° to 20°, the synthesis of lysophosphatidyl glycerol was unaffected but the rate of its esterification to phosphatidyl glycerol was significantly retarded. Transfer of such a culture back to 35° resulted in a marked acceleration in the rate of conversion of lysophosphatidyl glycerol to phosphatidyl glycerol.  相似文献   

17.
Palmarosa inflorescence with partially opened spikelets is biogenetically active to incorporate [U-14C]sucrose into essential oil. The percent distribution of14C-radioactivity incorporated into geranyl acetate was relatively higher as compared to that in geraniol, the major essential oil constituent of palmarosa. At the partially opened spikelet stage, more of the geraniol synthesized was acetylated to form geranyl acetate, suggesting that majority of the newly synthesized geraniol undergoes acetylation, thus producing more geranyl acetate.In vitro development of palmarosa inflorescence, fed with [U-14C]sucrose, resulted in a substantial reduction in percent label from geranyl acetate with a corresponding increase in free geraniol, thereby suggesting the role of an esterase in the production of geraniol from geranyl acetate. At time course measurement of14CO2 incorporation into geraniol and geranyl acetate substantiated this observation. Soluble acid invertase was the major enzyme involved in the sucrose breakdown throughout the inflorescence development. The activities of cell wall bound acid invertase, alkaline invertase and sucrose synthase were relatively lower as compared to the soluble acid invertase. Sucrose to reducing sugars ratio decreased till fully opened spikelets stage, concomitant with increased acid invertase activity and higher metabolic activity. The phenomenon of essential oil biosynthesis has been discussed in relation to changes in these physiological parameters.  相似文献   

18.
When a culture of Bacillus megaterium ATCC 14581, growing at 20° and treated with the fatty acid synthesis inhibitor, cerulenin, was incubated with [U-14C]palmitate, 50% of the incorporated label was found in 1-palmitoyl-lysophosphatidyl glycerol within 5 min. Most of the remaining 14C appeared in free fatty acid and phosphatidyl glycerol. By 45 min almost all of the lyso compound had disappeared and 80% of the incorporated label was found in phosphatidyl glycerol. At 20°, in the absence of cerulenin or at 35° in either its presence or absence, no labeled lysophosphatidyl glycerol could be found at any time after [U-14C]palmitate addition. The major radioactive lipid, in these cases, was always phosphatidyl glycerol. At 20°, the palmitate of phosphatidyl glycerol but not of lysophosphatidyl glycerol was readily desaturated.  相似文献   

19.
The distribution of [14C]-labelled material into subcellular fractions of 15-day-old rat brain was studied at 2 and 24 h following intraperitoneal and intracerebral injection of [2-14C]sodium acetate, [U-14C]glucose and [2-14C]mevalonic acid respectively. The total quantity of labelled isoprenoids in the brain was, except for glucose, greater when the precursor was administered intracerebrally. The intraperitoneal route was more advantageous in the case of [U-14C]glucose. The subcellular distribution of both labelled total isoprenoid material and sterol was distinct for each labelled precursor. Intracerebrally injected [U-14C]glucose at both time periods studied suggested no dominance of labelling in any fraction. After intraperitoneal injection of [U-14C]glucose the microsomes were more prominently labelled. Both methods of administration of sodium [2-14C]acetate resulted in heavy labelling of the myelin fraction after 24 h. The total labelled isoprenoids resided mainly in the microsomes 24 h after injection of [2-14C]mevalonic acid. Labelled sterol was found to be localized more in the myelin and microsomal fractions for all three precursors than was the labelled total isoprenoids. Depending on the type of experiment to be conducted, each of these precursors can give different results, which must be interpreted accordingly.  相似文献   

20.
Roberto Viola 《Planta》1996,198(2):186-196
Metabolism of radiolabelled hexoses by discs excised from developing potato (Solanum tuberosum L.) tubers was been investigated in the presence of acid invertase to prevent accumulation of labelled sucrose in the bathing medium (Viola, 1996, Planta 198: 179–185). When the discs were incubated with either [U-14C]glucose or [U-14C]fructose without unlabelled hexoses, the unidirectional rate of sucrose synthesis was insignificant compared with that of sucrose breakdown. The inclusion of unlabelled fructose in the medium induced a dramatic increase in the unidirectional rate of sucroses synthesis in the tuber discs. Indeed, the decline in the sucrose content observed when discs were incubated without exogenous sugars could be completely prevented by including 300 mM fructose in the bathing medium. On the other hand, the inclusion of unlabelled glucose in the medium did not significantly affect the relative incorporation of [U-14C]glucose to starch, sucrose or glycolytic products. Substantial differences in the intramolecular distribution of 13C enrichment in the hexosyl moieties of sucrose were observed when the discs were incubated with either [2-13C]fructose or [2-13C]glucose. The pattern of 13C enrichment distribution in sucrose suggested that incoming glucose was converted into sucrose via the sucrose-phosphate synthase pathway whilst fructose was incorporated directly into sucrose via sucrose synthase. Quantitative estimations of metabolic fluxes in vivo in the discs were also provided. The apparent maximal rate of glucose phosphorylation was close to the extractable maximum catalytic activity of glucokinase. On the other hand, the apparent maximal rate of fructose phosphorylation was much lower than the maximum catalytic activity of fructokinase, suggesting that the activity of the enzyme (unlike that of glucokinase) was regulated in vivo. Although in the discs incubated with or without fructose the rates of starch synthesis or glycolysis were similar, the relative partitioning of metabolic intermediates into sucrose was much higher in discs incubated with fructose (0.6% and 32.6%, respectively). It is hypothesised that the equilibrium of the reaction catalysed by sucrose synthase in vivo is affected in discs incubated with fructose as a result of the accumulation of the sugar in the tissue. This results in the onset of sucrose cycling. Incubation with glucose enhanced all metabolic fluxes. In particular, the net rate of starch synthesis increased from 2.0 mol · hexose · g FW–1 · h–1 in the absence of exogenous glucose to 3.7 mol · hexose · g FW–1 · h–1 in the presence of 300 mM glucose. These data are taken as an indication that the regulation of fructokinase in vivo may represent a limiting factor in the utilisation of sucrose for biosynthetic processes in developing potato tubers.Abbreviations ADPGlc adenosine 5-diphosphoglucose - Glc6P glucose-6-phosphate - hexose-P hexose phosphate - NMR nuclear magnetic resonance - UDPGlc uridine 5-diphosphoglucose Many thanks to L. Sommerville for skillfull assistance and to J. Crawford and J. Liu for useful discussions on flux analysis. The research was funded by the Scottish Office Agriculture and Fisheries Department.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号