首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 609 毫秒
1.
为研究钢轨伸缩调节器及小阻力扣件对大跨度公铁平层斜拉桥上梁轨相互作用规律的影响,以某大跨度公铁平层斜拉桥为研究对象,基于梁轨相互作用理论,建立大跨度公铁平层斜拉桥上无缝线路纵向力分析有限元模型,对不同工况下斜拉桥上梁轨相互作用规律进行研究。研究结果表明:在公路及铁路列车荷载作用下,对于大跨度公铁平层斜拉桥上无缝线路而言,在主桥两侧设置钢轨伸缩调节器,可大幅降低梁轨间的相互作用力,并能满足钢轨强度及稳定性限值要求;当在主桥两侧布置钢轨伸缩调节器且伸缩调节器基本轨一侧分别铺设100 m小阻力扣件时,钢轨总应力及纵向总压力分别为243.6 MPa, 716.9 kN,能够满足钢轨强度及轨道稳定性要求,且减少小阻力扣件的应用。  相似文献   

2.
连续桩板结构与无缝线路间的梁轨相互作用规律复杂,为研究该结构上无缝线路的纵向力规律,以福州地铁6号线某一连续桩板结构过渡段为工程背景,运用梁轨相互作用原理,建立此过渡段梁轨相互作用有限元模型,进而分析该过渡段上无缝线路纵向力规律。研究结果表明:钢轨制动力受桥梁跨数,结构纵向刚度以及制动荷载位置的影响较大;简支梁桥上列车制动时,应以制挠力为分析指标;桩板结构上列车制动时,可以制动力为主要分析指标。桩板结构上钢轨伸缩力呈对称分布,且远大于简支梁桥上的钢轨伸缩力;增设变形缝能显著减小桩板结构上的钢轨伸缩力。对于长距离连续桩板结构,可在结构中点处设置钢轨伸缩调节器;钢轨断缝值受桩板结构温降影响显著,两者呈线性变化。  相似文献   

3.
为探讨大跨度斜拉桥上无缝线路纵向受力与变形规律,以一座多线预应力混凝土斜拉桥为例,采用有限元法建立了"塔-索-梁-轨"空间耦合有限元模型,分析了温度荷载、列车荷载以及制动荷载对桥上无缝线路纵向受力与变形的影响。结果表明:当桥塔温度变化时,钢轨伸缩力、钢轨纵向位移和桥梁的纵向位移均无明显变化,钢轨伸缩力最大幅值出现在连续梁两部,并在简支梁梁缝处出现峰值;在列车荷载作用下,各条线路的钢轨挠曲力和钢轨纵向位移随着距加载线路距离的增大而逐渐减小,钢轨挠曲力最大幅值出现在连续梁端部;在制动荷载作用下,钢轨制动力最大幅值出现在连续梁端部,并在加载的起点与终点出现峰值突变,加载的起点或终点与连续梁端部重合时为最不利位置。研究结果可为大跨度斜拉桥上无缝线路设计提供理论参考。  相似文献   

4.
为研究有轨电车小半径曲线连续钢梁桥上铺设无缝线路,利用有限元法建立轨道-桥梁曲线线型相互作用模型,分别对有缝线路布置、不设钢轨伸缩调节器无缝线路布置、设钢轨伸缩调节器无缝线路布置进行了降温伸缩工况计算。研究结果表明:有缝线路轨缝在大跨度桥梁梁端较难协调桥梁伸缩位移,轨缝存在夏季顶死、冬季拉大的病害;不设钢轨伸缩调节器的无缝线路导致曲线连续梁桥墩承受较大的钢轨温度力径向分力,曲线与直线线型衔接处存在轨向不平顺;设钢轨伸缩调节器的无缝线路通过钢轨伸缩调节器释放了钢轨温度力,桥墩承受的钢轨温度力径向分力较小。考虑到梁轨的纵向和横向耦合作用,采用曲线线型建立计算模型较为符合实际工况。  相似文献   

5.
以某在建大跨度钢桁梁柔性拱桥为研究对象,运用梁轨相互作用原理,采用有限元方法建立桥上无缝线路计算模型,提出4种扣件铺设方案并分析其梁轨相互作用。结果表明:(1)对于明桥面无缝线路,桥梁温度跨度和扣件纵向阻力是影响无缝线路纵向力的决定性因素,大跨度钢桁梁柔性拱桥的纵梁体系对无缝线路纵向力的影响有限。(2)若不设置钢轨伸缩调节器,无缝线路钢轨强度检算不能满足规范要求。(3)应根据桥梁梁端最大伸缩位移,选择相应的梁端伸缩装置和钢轨伸缩调节器。  相似文献   

6.
大跨度提篮拱桥上无缝线路设计关键技术研究   总被引:2,自引:0,他引:2  
研究目的:通过研究提篮拱桥在温度变化、列车荷载作用下的变形规律,并建立铺设无砟轨道的大跨度提篮拱桥无缝线路的非线性有限元计算模型,进行梁轨相互作用分析,计算铺设无砟轨道的140 m跨径提篮拱桥上无缝线路变形、纵向力、伸缩位移、挠曲位移,为桥梁和无缝线路设计检算提供支持.研究结论:在计算提篮拱桥的伸缩力时,可采用与常见简支梁或连续梁相同的方法计算梁的伸缩位移量;在列车荷载作用下提篮拱产生的最大挠曲位移明显小于伸缩位移,钢轨挠曲力较钢轨伸缩力小,挠曲力一般不控制轨道检算,但可能控制墩台的设计检算.  相似文献   

7.
研究目的:大跨度斜拉桥结构复杂,为"塔-索-梁"空间组合结构,在荷载作用下,其无缝线路梁轨相互作用极为复杂。本文以一座铁路常用双塔钢桁斜拉桥为例,基于梁轨相互作用原理,建立斜拉桥上无缝线路纵向力计算模型,分析主塔墩温差、斜拉索温差、主塔墩刚度、主梁刚度及结构支撑体系对钢轨伸缩力的影响,为大跨度斜拉桥上无缝线路设计提供理论依据。研究结论:(1)随着主塔墩温差增大,钢轨伸缩力减小,主塔墩温差越大,主梁主跨竖向位移就越大;(2)随着斜拉索温差增大,钢轨伸缩力增大较小,但主梁主跨竖向位移急剧减小;(3)主塔墩刚度变化对钢轨伸缩力影响较小;(4)采用漂浮体系时,钢轨伸缩力与半漂浮体系几乎一致,采用塔梁固定支撑和塔梁固结体系时,主梁左端梁缝处的伸缩力减小,但主梁右端梁缝处的钢轨伸缩力反而增大,因此在铁路大跨斜拉桥设计中建议不采用这两种支撑体系;(5)该研究成果可指导大跨度斜拉桥无缝线路设计。  相似文献   

8.
桥上无砟轨道受力比较复杂,桥上无砟轨道无缝线路的稳定性直接影响高速列车的行车平稳与安全。基于有限元法和梁轨相互作用理论,建立了6×32 m混凝土简支梁桥上CRTSⅠ型板式无砟轨道无缝线路空间耦合模型,研究温度荷载作用下钢轨、轨道板及底座板的受力变形特性,并对相关影响参数进行分析。结果表明:在温度荷载作用下,钢轨伸缩力的峰值出现在桥梁墩台及跨中,钢轨的纵向位移呈现先增后减的趋势,在中间两跨达到最大值,钢轨和轨道板的纵向伸缩趋势基本一致,表明扣件起到了很好的约束作用;桥上采用小阻力扣件可改善桥上无缝线路梁轨相互作用,但要充分考虑轨板相对位移不能过大,保证钢轨在桥台处的爬行能够得到有效控制;从减小桥上轨道结构伸缩力及纵向位移考虑,桥梁墩台固定端纵向刚度不宜过大。  相似文献   

9.
高速铁路斜拉桥上无缝线路纵向力研究   总被引:6,自引:0,他引:6  
采用带刚臂的梁单元模拟桥梁,用非线性弹簧模拟线路纵向阻力,并采用相关文献试验结果进行验证。以该模型为基础,建立塔-索-轨-梁-墩-桩的斜拉桥整体空间有限元模型。以沪昆高速铁路某(32+80+112)m槽型截面单塔斜拉桥为例,对斜拉桥上无缝线路纵向力传递规律进行分析;计算纵向力对斜拉索和塔墩影响;探讨桥梁截面形式、线路纵向阻力模型、斜拉桥约束方式、主梁和拉索温度变化、风压以及钢轨伸缩调节器设置位置等设计参数对纵向力影响;提出相关取值建议。  相似文献   

10.
以某货运专线大跨度箱型主梁混合梁斜拉桥建设为工程背景,建立了桥上长钢轨与桥梁结构系统纵向相互作用空间分析模型,系统计算分析了桥上钢轨扣件型式和伸缩调节器布置对轨-桥系统纵向相互作用的影响,提出了钢轨扣件和伸缩调节器合理布置方案。研究结果表明,桥上铺设小阻力扣件可使钢轨制动力幅值略有减小,伸缩附加力最大值明显减小,挠曲力幅值有所减小,在主桥两端设置钢轨伸缩调节器对降低轨-桥系统纵向相互作用力效果最佳。  相似文献   

11.
随着桥梁跨度、联长的不断增加,复杂的梁轨相互作用给桥上无缝线路设计带来了巨大挑战。本文在总结桥上无缝线路计算理论和求解模型的基础上,以某长联大跨桥上无缝线路为例,对其力学特性和结构设计进行了系统研究。研究表明:(1)长联大跨桥上无缝线路纵向附加力较大,钢轨强度往往难以满足规范要求;(2)梁端设置伸缩调节器,可有效减小梁轨相互作用,放散钢轨纵向力;(3)梁端设置抬枕装置可有效缓解梁缝增大导致的轨道刚度不均匀问题,需与伸缩调节器配套使用;(4)长联大跨桥上轨道设置健康监测系统十分必要。  相似文献   

12.
为探究列车制动荷载作用下轨道、桥梁结构纵向受力特性及其影响因素,基于有限元法和梁-板-轨相互作用原理,建立多跨简支梁桥上CRTSⅢ型板式无砟轨道无缝线路空间耦合模型,对列车制动荷载作用下结构纵向受力特性、传递规律及其影响因素进行分析。结果表明:以全桥列车制动加载作为计算轨道及桥梁结构制动受力与变形时的最不利工况是偏安全的,并应以有载侧计算数据进行检算;桥上扣件需依据轨道板快速相对位移试算结果进行比选, WJ-8型小阻力扣件可适用于多跨简支梁桥且有较大安全冗余;桥上采用小阻力扣件或墩顶纵向刚度较小时均会使得列车制动荷载作用下的轨道板快速相对位移较大,不利于扣件的长期服役;轨道和桥梁结构制动检算过程中建议将桥跨数简化为10~15跨;需保证土工布隔离层的滑动性能,且应将其摩擦系数应控制在合理范围内。  相似文献   

13.
对于大跨、大坡道和小半径曲线桥梁,梁轨相互作用关系更加复杂、附加作用力及断轨时的断缝值也较大,给桥上铺设无缝线路结构带来困难。为研究高速铁路大跨刚构-连续组合梁桥无缝线路铺设方案,以新建贵广铁路圣泉1号特大桥为工程背景,建立线-桥-墩一体化有限元计算模型,分析不同结构方案下线、桥纵向受力情况。研究结果表明:对于圣泉1号双线特大桥桥上无缝线路,铺设小阻力扣件、钢轨伸缩调节器、调节锁定轨温等常规设计方案无法同时满足强度、稳定性、断缝值等检算指标的需求,建议采取"伸缩调节器+道砟胶"的技术方案。  相似文献   

14.
根据桥上纵连板式无砟轨道的结构特点,基于有限元方法建立桥上纵连板式无砟轨道挠曲计算模型,计算温度荷载下的挠曲力,分析列车荷载作用长度、活载入桥方式对挠曲力的影响,研究桥上纵连板式无砟轨道在挠曲力作用下的梁轨相互作用规律。结果表明:桥梁挠曲变形所引起的钢轨纵向附加力较小,其中简支梁桥上钢轨挠曲附加力不超过21.6 kN,连续梁桥上钢轨挠曲附加力不超过24.0 kN;在进行部件的受力检算时,应根据具体的部件选用伸缩力或挠曲力;与桥上有砟轨道及单元板式无砟轨道有较大不同的是,还需要根据不同的检算部件寻求最不利的挠曲力列车荷载加载方式;建议采用活动端迎车进行加载。  相似文献   

15.
为保证铁路轨道、桥梁在温度及列车荷载作用下满足强度和稳定性的要求,大跨度桥梁需进行无缝线路纵向附加力检算。针对桥上无缝线路纵向附加力计算模型建立难度大、耗时长、且建立的模型通用性不足的特点,根据桥梁轨相互作用理论,基于Windows系统采用VB.net及ANSYS APDL二次开发语言,研发了桥上无缝线路纵向附加力计算软件。软件拥有完善的前后处理模块,前处理模块可实现多种桥跨组合等参数的输入,内核采用梁轨相互作用有限元计算程序,后处理模块可实现数据可视化及计算报告自动输出。软件操作简便,界面友好,功能强大。以60 m+100 m+60 m连续梁为例,对无缝线路纵向附加力进行了计算及结果对比,结果误差在2.12%以内,验证了编制软件的正确性。  相似文献   

16.
跨兴闫公路特大桥无缝线路综合试验研究   总被引:1,自引:0,他引:1  
跨兴闫公路特大桥无缝线路综合试验是秦沈客运专线跨区间无缝线路关键技术试验研究的内容之一,内容包括桥墩纵向刚度、梁体温度变化、道床纵向阻力、伸缩力、挠曲力、梁轨纵向相对位移等测试。总结了各项试验内容的试验方法和试验结果,采用实测参数计算了伸缩力和挠曲力的理论值。结果表明:理论值与试验值基本一致;试验经验和测试结果对于验证桥上无缝线路的理论分析模型,提高桥上无缝线路的设计水平具有重要意义。  相似文献   

17.
张捍东 《铁道建筑》2020,(3):104-107,117
以昌赣客运专线(35+40+60+300+60+40+35)m混合梁斜拉桥为例,建立了大跨度斜拉桥上无砟轨道精细化模型计算分析不同荷载作用下大跨度桥上无砟轨道纵向力。计算结果表明:在温度荷载作用下,钢轨纵向应力相对较大,最大拉应力为130.03 MPa,跨中轨道板纵向应力较小。在竖向荷载作用下,钢轨、轨道板和底座板的拉应力最大值出现在桥塔附近,压应力最大值出现在跨中附近,其中钢轨压应力最大值为15.02 MPa,底座板拉应力最大值为3.05 MPa。在列车制动作用下,钢轨、轨道板和底座板的拉应力最大值出现在跨中附近,压应力最大值出现在桥塔附近,轨道板和底座板纵向应力均较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号