首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of altered endogenous indole-3-acetic (IAA) levels on elongation in garden pea (Pisum sativum L.) plants were investigated. The auxin transport inhibitors 2,3,5-triiodobenzoic acid (TIBA) and 9-hydroxyfluorene-9-carboxylic acid (HFCA) were applied to elongating internodes of wild-type and mutant lkb plants. The lkb mutant was included because elongating lkb internodes contained 2- to 3-fold less free IAA than those of the wild type. In the wild type, TIBA reduced both the IAA level and internode elongation below the site of application. Both TIBA and HFCA strongly promoted the elongation of lkb internodes and also raised IAA levels above the application site. The synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) also markedly increased internode elongation in lkb plants and virtually restored petioles and tendrils to their wild-type length. In contrast, treatment of wild-type plants with TIBA, HFCA, or 2,4-D caused little or no increase in elongation above the application site. The ethylene synthesis inhibitor aminoethoxyvinylglycine also increased stem elongation in lkb plants, and combined application of HFCA and aminoethoxy-vinylglycine restored lkb internodes to the wild-type length. It is concluded that the level of IAA in wild-type internodes is necessary for normal elongation, and that the reduced stature of lkb plants is at least partially attributable to a reduction in free IAA level in this mutant.  相似文献   

2.
Yang T  Law DM  Davies PJ 《Plant physiology》1993,102(3):717-724
Exogenously applied indole-3-acetic acid (IAA) strongly promoted stem elongation over the long term in intact light-grown seedlings of both dwarf (cv Progress No. 9) and tall (cv Alaska) peas (Pisum sativum L.), with the relative promotion being far greater in dwarf plants. In dwarf seedlings, solutions of IAA (between 10-4 and 10-3 M), when continuously applied to the uppermost two internodes via a cotton wick, increased whole-stem growth by at least 6-fold over the first 24 h. The magnitude of growth promotion correlated with the applied IAA concentration from 10-6 to 10-3 M, particularly over the first 6 h of application. IAA applied only to the apical bud or the uppermost internode of the seedling stimulated a biphasic growth response in the uppermost internode and the immediately lower internode, with the response in the latter being greatly delayed. This demonstrates that exogenous IAA effectively promotes growth as it is transported through intact stems. IAA withdrawal and reapplication at various times enabled the separation of the initial growth response (IGR) and prolonged growth response (PGR) induced by auxin. The IGR was inducible by at least 1 order of magnitude lower IAA concentrations than the PGR, suggesting that the process underlying the IGR is more sensitive to auxin induction. In contrast to the magnitude of the IAA effect in dwarf seedlings, applied IAA only doubled the growth in tall seedlings. These results suggest that endogenous IAA is more growth limiting in dwarf plants than in tall plants, and that auxin promotes stem elongation in the intact plant probably by the same mechanism of action as in isolated stem segments. However, since dwarf plants to which IAA was applied failed to reach the growth rate of tall plants, auxin cannot be the only limiting factor for stem growth in peas.  相似文献   

3.
Application of gibberellic acid to the apex of dwarf bean plants (cv. Alabaster) stimulated the elongation growth of epicotyl and hypocotyl but showed no significant effect on elongation growth in a normal cultivar (‘Blue Lake’). Gibberellin-treatment of dwarf plants was characterized by about twofold increase in the level of endogenous auxin. Maximum increase in IAA level was observed after 48 h of GA treatment. There was less increase in IAA content in normal bean plants. — Gibberellin treatment to excised epicotyl and hypocotyl sections of either dwarf or normal cultivar showed no effect on elongation growth. However, a considerable increase in the auxin level was observed in the sections of the dwarf cultivar. The maximum effect occurred with only 1 h incubation in basal medium containing gibberellin. — The indolo-α-pyrone spectro-fluoremetric method for IAA determination was used.  相似文献   

4.
Growth of the primary root of 12 genotypes of peas ( Pisum sativum ) differing in their stem height was recorded for 14 days. The growth rate of roots of wild-type tall, gibberellin (GA)-deficient le dwarf or slender mutants (with la crys ) was similar (3 cm day−1); that of severely GA-deficient nana ( na-1 ) plants was 50% of wild-type but elongation ceased after 8 days; moderately severe dwarf GA-deficient lines ls-1 and lh-1 had a 15% reduction in elongation rate but displayed no time-dependent slowing of the growth rate and brassinosteroid-insensitive and -deficient dwarfs lka and lkb showed slightly decreased root elongation. GA (levels reported in Yaxley et al. 2001 ) is not substantially limiting to root growth until it is severely deficient. The terminal 3 cm of roots of tall plants contained about 25 or 35 ng g−1 fresh weight indole-3-acetic acid (IAA), depending on the genetic background, and le-1 dwarfs were similar. Nana ( na-1 ) had less than 50% the level of IAA of tall, all the moderately severe dwarfs had reductions of about 30% and the slender plants had about 40% more IAA than the corresponding wild-type. With the exception of slender plants, IAA level in the root tips correlated with root elongation. Root growth seems to be promoted by IAA within the range of the internal concentrations detected. Nana plants had a reduced amount of IAA and a lower root-growth rate. Whereas external application of IAA always inhibits root growth, even at very low concentrations, root growth is not similarly inhibited by internal IAA as slender plants had the highest IAA level and growth rate similar to wild-type, regardless of the shoot GA content.  相似文献   

5.
The objective of this investigation was to examine the response to exogenous auxin (indole-3-acetic acid; IAA)of stem segments at two developmental stages. The standard auxin response of excised stem segments and intact plants consists of an initial growth response and a prolonged growth response. We found that this biphasic response does not occur in internodes at very early stages. Stem segments of light grown pea of various genotypes were cut when the fourth internode was at 6–13% of full expansion (early-expansion) or at 18–25% of full expansion (mid-expansion). Length measurements of excised segments were made after 48 hours of incubation on buffer with or without auxin. An angular position transducer linked to a computerized data collection system provided high-resolution measurement of growth of stacks of segments incubated in buffer over 20 hours. Early-expansion segments of all genotypes deviated from the standard auxin response, while mid-expansion segments responded in a manner consistent with previous reports. Early-expansion segments of tall, light-grown plants were unique in showing an auxin-induced inhibition of growth. The auxin-induced inhibition correlated with high endogenous auxin content, as determined by HPLC and GC/MS, across genotypes and between early-expansion and mid-expansion segments of tall plants. Measurement of ethylene evolved from stem segments in response to auxin, and treatment of segments with the ethylene action inhibitor, norbornadiene, showed the inhibition to be mediated in part by heightened ethylene sensitivity. Growth of early-expansion segments of dwarf and severe dwarf plants was stimulated by exogenous auxin, but the growth rate increase was delayed compared to that in mid-expansion segments. This is the first time that such a growth response, termed the delayed growth response has been emonstrated. It is concluded that developmental stage and endogenous hormone content affect tissue response to exogenous auxin.  相似文献   

6.
While indole-3-butyric acid (IBA) has been confirmed to be an endogenous form of auxin in peas, and may occur in the shoot tip in a level higher than that of indole-3-acetic acid (IAA), the physiological significance of IBA in plants remains unclear. Recent evidence suggests that endogenous IAA may play an important role in controlling stem elongation in peas. To analyze the potential contribution of IBA to stem growth we determined the effectiveness of exogenous IBA in stimulating stem elongation in intact light-grown pea seedlings. Aqueous IBA, directly applied to the growing internodes via a cotton wick, was found to be nearly as effective as IAA in inducing stem elongation, even though the action of IBA appeared to be slower than that of IAA. Apically applied IBA was able to stimulate elongation of the subtending internodes, indicating that IBA is transported downwards in the stem tissue. The profiles of growth kinetics and distribution suggest that the basipetal transport of IBA in the intact plant stem is slower than that of IAA. Following withdrawal of an application, the residual effect of IBA in growth stimulation was markedly stronger than that of IAA, which may support the notion that IBA conjugates can be a better source of free auxin through hydrolysis than IAA conjugates. It is suggested that IBA may serve as a physiologically active form of auxin in contributing to stem elongation in intact plants.  相似文献   

7.
White light suppressed the stem growth and promoted leaf expansion. With increased irradiance the light effect was enhanced. The morphogenetic effects induced by light and by dwarf-mutation are similar. However, the nature of phenotyplc and genotyplc dwarfism is different. In the dwarf mutants the auxin level is not changed in contrast to the GA, ABA and QGC contents. Under high irradiance which depressed the stem growth, auxin and GA-levels were lowered while the content of QGC and of growth-inhibitor non-identical with ABA increased, but the level of ABA was not affected. The sensitivity of various pea forms to the light and to exogenous phytohormones (GA and IAA) is different. The plants with the shortest stems were more sensitive to light and GA. Data on the stem growth and rhizogenesis induced by light and by GA are presented. The metabolism of 2-14C-PCA (precursor of QGC) in tall and dwarf forms is different. The possible role of phytohormones and some phenolic compounds in the regulation of growth and morphogenesis of phenotyplc and genotyplc dwarf forms is discussed.  相似文献   

8.
The relationship between auxin destruction and stem internode elongation was investigated in the vines of the Japanese morning glory (Pharbitis nil Choisy). In young plants an age-dependent gradient was demonstrated in which the decreasing rate of elongation of older internodes correlated with an increasing ability of such tissue to destroy indoleacetic acid. Fragments of tissue from old internodes when incubated with indoleacetic acid (IAA), destroyed the hormone immediately and rapidly; in contrast, young, rapidly elongating internode tissue destroyed IAA only after a lag of several hours. In older plants the gradient was more erratic towards the middle of the plant but old and young tissue behaved as in young plants, i.e., old internodes destroyed IAA rapidly whereas young internodes did not. It appears reasonable to conclude that cessation of elongation in maturing internodes is brought about by developing an internal environment in which auxin is rapidly destroyed.  相似文献   

9.
Auxin-Gibberellin Interactions in Pea: Integrating the Old with the New   总被引:4,自引:1,他引:3  
Recent findings on auxin-gibberellin interactions in pea are reviewed, and related to those from studies conducted in the 1950s and 1960s. It is now clear that in elongating internodes, auxin maintains the level of the bioactive gibberellin, GA1, by promoting GA1 biosynthesis and by inhibiting GA1 deactivation. These effects are mediated by changes in expression of key GA biosynthesis and deactivation genes. In particular, auxin promotes the step GA20 to GA1, catalyzed by a GA 3-oxidase encoded by Mendel’s LE gene. We have used the traditional system of excised stem segments, in which auxin strongly promotes elongation, to investigate the importance for growth of auxin-induced GA1. After excision, the level of GA1 in wild-type (LE) stem segments rapidly drops, but the auxin indole-3-acetic acid (IAA) prevents this decrease. The growth response to IAA was greater in internode segments from LE plants than in segments from the le-1 mutant, in which the step GA20 to GA1 is impaired. These results indicate that, at least in excised segments, auxin partly promotes elongation by increasing the content of GA1. We also confirm that excised (light-grown) segments require exogenous auxin in order to respond to GA. On the other hand, decapitated internodes typically respond strongly to GA1 application, despite being auxin-deficient. Finally, unlike the maintenance of GA1 content by auxin, other known relationships among the growth-promoting hormones auxin, brassinosteroids, and GA do not appear to involve large changes in hormone level.  相似文献   

10.
The effects of GA on stem elongation were studied using segments from one tall and three dwarf light-grown pea genotypes varying in endogenous hormone content. Stem segments were cut at two distinct ages: when the fourth internode was at about 6–13% of full expansion (early-expansion) or at 18–25% of full expansion (mid-expansion). Light microscopy and flow cytometry were used to demonstrate that GA does not induce cell division in excised pea stem segments. The growth studied here was strictly elongation. Measurement of final segment length after 48 hours and high resolution measurement of growth kinetics over 20 hours using an angular position transducer were done on segments treated with hormone solutions. Our data indicate that the action of GA on stem elongation can be classified into two distinct modes. The first, apparent in early-expansion stem segments, shows distinct growth kinetics and is independent of the endogenous IAA concentration of the segments. Quantitation of IAA by GC/MS in early-expansion segments of wild type pea incubated with gibberellin shows that an increase in IAA concentration is part of the GA response in such segments. The second mode of GA action is evinced in mid-expansion segments. Whereas there is no short term (<20 h) response to GA alone (as determined by growth kinetics), there is a long term (48 h) response whose magnitude decreases across the genotypes with decreasing endogenous hormone content. Growth responses indicate that in mid-expansion segments exogenous GA acts by enhancing IAA action but appears to be unable to augment endogenous IAA content. Contradictory reports of the response of excised stem segments to GA can be reconciled when tissue genotype and developmental stage are considered.  相似文献   

11.
The possible involvement of auxin in the action of gibberellin in stimulating cell elongation was examined by comparing the effects of gibberellic acid (GA) and IAA on the growth, osmoregulation and cell wall properties of the Alaska pea ( Pisum sativum L. cv. Alaska) subhook. Both GA and IAA stimulated cell elongation in the subhook region of derooted cuttings. Cotyledon excision decreased the stimulating effect of GA on the growth of the subhook region, but did not affect that of IAA. As the subhook region elongated, the osmotic potential of the cell sap and the total amount of osmotic solutes increased. Cotyledon excision accelerated the increase in the osmotic potential and suppressed the accumulation of osmotic solutes. In cuttings with cotyledons. GA partly counteracted the increase in the osmotic potential and substantially promoted the accumulation of osmotic solutes. On the other hand, in cuttings without cotyledons. GA did not affect the change in the osmotic potential although it slightly promoted the accumulation of osmotic solutes. IAA accelerated the increase in the osmotic potential, but did not affect the accumulation of osmotic solutes. IAA enhanced the extensibility of the cell wall, while GA did not affect it. These results suggest that at least in the Alaksa pea subhook region. GA does not stimulate cell elongation by affecting the level of auxin.  相似文献   

12.
Effect of morphactin IT 3456, an auxin transport inhibitor, on tulip stem elongation induced by indole-3-acetic acid (IAA) was investigated. Tulip stem growth induced by IAA 0.1 % in lanolin paste applied on the top internode after excision of flower bud and removal of all leaves was greatly inhibited by 0.2 % morphactin IT 3456 applied on the 4th, 3rd, 2nd and 1st internode. The inhibitory effect of the morphactin on tulips stem growth promoted by IAA was restored by additional application of IAA below the morphactin treatment place. Morphactin inhibited also the growth of all internodes induced by flower bud in the absence of leaves. These results suggest a crucial role of auxin in the control growth of all internodes in tulip stem.  相似文献   

13.
Maleic hydrazide (MH) and gibberellic acid (GA) were applied alone and in combination at various doses to dwarf and tall varieties of garden pea, and their effect on stem extension measured. Combinations of MH and 3-indolylacetic acid (IAA) were also studied. Stern extension of dwarf peas was accelerated by GA and inhibited by MH. Their effects were not additive, since MH reduced the response to GA at all concentrations of each tested. IAA did not affect stem extension, whether applied alone or in combination with MH. Stem extensions of tall peas was not affected by GA or IAA alone. MH severely inhibited growth and this inhibition was not reduced either by GA or by IAA. At low doses MH broke apical dominance and side branches developed; extension of these was stimulated by GA and IAA and extension of the main axis correspondingly still further reduced. The results show that MH prevents the response to GA of GA-sensitive plants. It is suggested that the rapid growth of tall peas, as compared with that of dwarfs, and their lack of response to GA, are due to a greater capacity to synthesize a 'GA-like hormone'. Growth of tall peas is much more drastically inhibited by MH than that of dwarf peas and the suggestion is made that the inhibition of shoot growth induced by MH is due primarily to blocking the activity of the postulated 'GA-like hormone'.  相似文献   

14.
THE RELATIONSHIP OF GIBBERELLIN AND AUXIN IN PLANT GROWTH   总被引:5,自引:0,他引:5  
No synergism was found between IAA and gibberellin in the Avenucurvature test and this bioassay thus measures changes in diffusibleauxin resulting from gibberellin treatment and not a synergisticaction of the gibberellin on the curvature response to auxin.Gibberellin treatment causes an increase in diffusible auxinfrom the stem apex of dwarf pea (Pisum sativum L. var. LittleMarvel) 24 to 48 hours before the elongation response in thestem. The increase in diffusible auxin in the stem apex of Centaureacyanus L. var. Blue Boy occurs four to six days before the boltingresponse to gibberellin treatment under short days. The stemtissues of both the dwarf pea and Centaurea show an elongationresponse to IAA when the IAA is applied in a manner simulatingthe stem apex. Thus the growth of the dwarf pea and the boltingof Centaurea brought about by treatment with gibberellin aredependent on an increase in diffusible auxin. 1Present address: Biological Institute, College of General Education,University of Tokyo, Komaba, Meguro, Tokyo.  相似文献   

15.
Aloni R 《Plant physiology》1979,63(4):609-614
The hypothesis that auxin and gibberellic acid (GA3) control the differentiation of primary phloem fibers is confirmed for the stem of Coleus blumei Benth. Indoleacetic acid (IAA) alone sufficed to cause the differentiation of a few primary phloem fibers. In long term experiments auxin induced a considerable number of fibers in mature internodes. GA3 by itself did not exert any effect on fiber differentiation. Combinatiosn of IAA with GA3 completely replaced the role of the leaves in primary phloem fiber differentiation qualitatively and quantitatively. Although the combined effect of the two growth hormones diminished considerably with increasing distance from the source of induction, auxin with GA3 or IAA alone induced fibers in a few internodes below the application site. When various combinations of both hormones were applied, high concentrations of IAA stimulated rapid differentiation of fibers with thick secondary walls, while high levels of GA3 resulted in long fibers with thin walls. The size of the primary phloem fibers correlated with the dimensions of the differentiating internode, thereby providing evidence that both growth regulators figure in the control of stem extension. High IAA/low GA3 concentrations have an inhibitory effect on internode elongation, whereas low IAA/high GA3 concentrations promote maximal stem elongation.  相似文献   

16.
Two further internode length genes are identified in Pisum sativum L. and named lka (identified from line NGB5865) and lkb (from NGB5862). These genes result in a similar phenotype, which includes reduced stem elongation, peduncle length and basal branching, and 'banding' of the stem. These effects are similar to, but less severe than, those of gene lk . Genes lka and lkb influence gibberellin (GA) sensitivity, since mutants NGB5865 and NGB5862 possess similar levels of endogenous GA-like substances to the wild-type parental cultivar Torsdag and respond less to applied GA1 than do wild-type plants or GA-synthesis mutants of a similar stature. The action of genes lka and lkb is localised in the young apical tissue but is not thought to involve GA-perception, since plants possessing genes lka and lkb are not true phenocopies of GA-deficient plants. The genetic interaction of genes lka and lkb is examined and the action of gene lkb on a le gene background determined.  相似文献   

17.
18.
The effect of auxin on elastic extensibility has been investigated by means of the resonance frequency melhod in Pisum, sativum. The time lag for the decrease in Young's modulus E, caused by IAA, was between 2 and 3 minutes in etiolated stem internodes. The time lag for growth was about 7 minutes. The measurements of E in root segments were only qualitative owing to the structural characteristics; IAA decreases E in roots as it does in stems, but only in the region where IAA is assumed to enhance elongation. The connexion between elastic modulus and growth is discussed with reference to other investigations. The assumption has been made that a decrease in elastic modulus indicates a change in the cell wall which in some way is conducive to growth (induction of elongation). The theoretical possibilities of changing E have been discussed with reference to the formula for water fluxes. Both a change in a cell wall properly and a change in the cytoplasmic permeability are able to cause a change in E in the same way as auxin does. An early action of auxin must be located in the cell-wall-plasmalemma region.  相似文献   

19.
Role of polyamines in gibberellin-induced internode growth in peas   总被引:1,自引:0,他引:1       下载免费PDF全文
To determine the requirement for polyamines in gibberellin (GA) induced internode growth polyamine content was measured in internodes of peas of various internode phenotypes (slender, tall, dwarf, nana) with and without applied gibberellin (GA3) and polyamine synthesis inhibitors. Polyamines were assayed as dansyl derivatives which were separated by reverse phase high performance liquid chromatography and detected by fluorescence spectrophotometry. The amounts of polyamines in the different genetic lines of peas, which differed in internode lengths and extractable GA content, correlated with the extent of internode elongation. High polyamine concentrations were associated with young internodes and decreased with internode expansion. Extremely short internodes of nana plants without GA exhibited equal or higher amine concentrations relative to internodes of other lines of peas and GA-stimulated nana seedlings. The polyamine synthesis inhibitors, α-difluoromethylornithine and α-difluoromethylarginine, independently or in combination, inhibited polyamine accumulation and internode elongation of tall peas and GA-stimulated nana plants. Agmatine and putrescine restored growth and endogenous polyamine content to variable degrees. However, exogenous polyamines were not effective in promoting growth unless intracellular amines were partially depleted.

These results suggest that polyamines do not have a role in cell elongation, but may be required to support cell proliferation. Polyamines do not mediate the entire action of GA in internode growth of peas since GA induction of growth involves both cell division and cell elongation, whereas polyamines appear to affect cell division only.

  相似文献   

20.
Reciprocal grafts, and applications of gibberellin (GA) and indoleacetic acid (IAA) were used to localize the site of control for stem elongation in cucumber (Cucumis sativus L.). Dwarf and tall plants were reciprocally grafted to determine influence of stems and roots on stem elongation. At 21 days there were no significant differences in length between stems grafted to their own roots and those grafted to roots of the other type. GA3, GA4+7, and IAA were applied to seedlings with and without live apical buds. Seedlings with live apical buds responded to level of added GA, but not to added IAA. GA4+7 was more effective than GA3. Hypocotyls of tall plants responded more to both GA treatments than did those of the dwarves when both types had live apical buds. When either GA4+7 or IAA was applied to seedlings with dead apical buds, elongation of the hypocotyl responded to level of the growth regulator, but there was no difference in response between the dwarf and tall plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号