首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
本文以甲醇开环环氧大豆油(ESO)得到大豆油多元醇(SBP),再与三羟甲基氧化膦(THPO),甲苯二异氰酸酯(TDI),表面活性剂(AK8805)和水反应得到大豆油基聚氨酯阻燃硬质泡沫。用红外(FT-IR)和核磁(~1H-NMR)对环氧大豆油和大豆油多元醇进行了表征。通过压缩试验、热重分析(TG)、扫描电镜(SEM)、极限氧指数、垂直燃烧仪等手段对泡沫的性能进行了测试。结果表明,随着三羟甲基氧化磷(THPO)含量增加,泡沫的力学性能和阻燃性能都得到了提高。  相似文献   

2.
以大豆油、苯酐、对苯二甲酸和小分子醇为原料,通过酯化–酯交换反应,制得了酸值0.5mg/g的大豆油基聚酯多元醇。通过FTIR(傅里叶变换红外)、~1H-NMR(核磁共振氢谱)的结构表征,确认了大豆油成功引入聚酯分子链中。同时,考察了大豆油用量对聚酯多元醇品质和聚氨酯泡沫性能的影响。结果表明,原料体系中含有质量分数15%~25%大豆油合成的聚酯多元醇时外观及加工性能较好,由其制备的聚氨酯泡沫的低温尺寸稳定性优异。  相似文献   

3.
大豆油衍生物及其在聚氨酯中的应用   总被引:1,自引:0,他引:1  
介绍了作为天然可再生资源的大豆油的结构、组成及其大豆油衍生物的合成以及在异氰酸酯型聚氨酯和新型的非异氰酸酯型聚氨酯(NIPU)方面的应用。其中,大豆油衍生物包括环氧大豆油、羟基多元醇大豆油、环状碳酸酯和含噁唑烷酮环的预聚物等。由环氧大豆油合成的环状碳酸酯制备的新型非异氰酸酯型聚氨酯可改善传统异氰酸酯型聚氨酯的许多特性,具有较好的耐热性和耐化学品性能。  相似文献   

4.
介绍了作为天然可再生资源的大豆油的结构、组成及其大豆油衍生物的合成和在异氰酸酯型聚氨酯和新型的非异氰酸酯型聚氨酯(NIPU)方面的应用。其中,大豆油衍生物包括环氧大豆油、羟基多元醇大豆油、环状碳酸酯和含噁唑烷酮环的预聚物等。由环氧大豆油合成的环状碳酸酯制备的新型非异氰酸酯型聚氨酯可改善传统异氰酸酯型聚氨酯的许多特性,具有较好的耐热性和耐化学品性。  相似文献   

5.
综述了将大豆油进行改性制备大豆油多元醇,替代石油基聚醚多元醇制备聚氨酯的研究进展,并展望了大豆油在制备聚氨酯泡沫塑料中的应用前景和发展趋势。主要从4个方面进行了介绍:羟基化合物改性大豆油制备聚氨酯泡沫塑料、巯基乙醇改性大豆油制备聚氨酯泡沫塑料、引入第三组分制备聚氨酯复合材料、特殊官能团改性大豆油多元醇制备聚氨酯泡沫塑料等。  相似文献   

6.
环氧大豆油增塑剂的应用及其研究进展   总被引:1,自引:0,他引:1  
环氧大豆油作为常用的辅助增塑剂,拥有价廉、无毒、原料来源广泛等优异的性能,能显著提高材料的柔韧性,起到良好的增塑作用,并能改善材料的缺陷等。同时,通过对环氧基的改性,在植物油基聚合物领域有潜在应用价值,能减少石油化工及煤化工衍生物的依赖,符合绿色环保的要求。根据以上特点,综述其在聚乳酸、紫外光固化涂料、聚氨酯、植物油基泡沫塑料、环氧树脂等聚合物领域的应用及其进展。  相似文献   

7.
以丙烯酸酯化环氧化大豆油及改性偶氮二甲酰胺为起始原料,在自由基引发下模塑固化发泡制备出新型大豆油油基泡沫材料,该方法不依赖异氰酸酯原料。研究了发泡体系的热分解特性、泡沫材料的固化度、压缩性能及泡孔形态。  相似文献   

8.
使用3-氨基丙基三乙氧基硅烷(APTES)与环氧大豆油(ESO)制备了氨基硅烷化环氧大豆油(AESO)。以异佛尔酮二异氰酸酯(IPDI)、二羟甲基丙酸(DMPA)、AESO为多元醇,采用一步法合成了氨基硅烷化环氧大豆油基水性聚氨酯(AWPU)。使用傅里叶变换红外光谱(FTIR)分别确认了AESO和AWPU膜的化学结构。随着AESO含量增高,乳液的粒径逐渐增大,固化膜的凝胶率、水接触角、耐水性增强。热重分析(TGA)显示了固化膜的热稳定性随AESO含量增加而提高。  相似文献   

9.
环氧大豆油的发展   总被引:5,自引:2,他引:3  
张颖  郭硙 《广东化工》2005,32(12):11-12
环氧大豆油由于本身优越的特性得到极其广泛的应用,本文介绍了环氧大豆油的制备、应用现状以及市场挑战。  相似文献   

10.
大豆油与过氧甲酸的环氧化动力学研究   总被引:1,自引:0,他引:1  
通过大豆油中的双键与过氧酸发生环氧化反应,合成了环氧大豆油(ESO)。从动力学的角度,对反应过程中的各种影响因素,进行了较详细的研究。得知大豆油与过氧甲酸反应,大豆油的反应级数为1级,过氧甲酸的反应级数为2级,其反应活化能为22.77 kJ/mol。生成的环氧大豆油与体系内的甲酸发生水解开环反应,环氧大豆油的反应级数为0.5级,甲酸的反应级数为1级,该反应活化能为4.91 kJ/mol。通过所得动力学参数设定了无催化剂的环氧大豆油合成工艺,得到了环氧值高达6.85的环氧大豆油。  相似文献   

11.
大豆油多元醇的制备及其在聚氨酯硬泡中的应用   总被引:1,自引:0,他引:1  
修玉英  卢彬  罗钟瑜 《应用化工》2008,37(4):416-419
通过实验制备出大豆油多元醇Soy-450,并应用于聚氨酯硬泡中,通过改变Soy-450的替代用量来研究其对硬泡性能的影响。随着Soy-450替代量的增加,发泡性能和尺寸稳定性有所下降,密度增大;当替代量为10~50份时,具有更高的垂直压缩强度;与石油基硬泡相比,大豆油基硬泡具有更好的热稳定性。  相似文献   

12.
用大豆油多元醇替代石化聚醚多元醇制备出了硬质聚氨酯泡沫塑料(RPUF),考察了石化聚醚多元醇和大豆油多元醇的比例以及RPUF密度对RPUF性能的影响。结果表明,随着大豆油多元醇用量的增加,RPUF的冲击强度和压缩模量减小,压缩屈服点逐渐消失,玻璃化转变温度升高;但随着大豆油基RPUF密度的增加,其冲击强度、压缩模量和储能模量都得到了提高,压缩模量最高可达56.44 MPa。  相似文献   

13.
The focus of this work was to synthesize bio‐based polyurethane (PU) foams from soybean oil (SO). Different polyols from SO were produced as follows: soybean oil monoglyceride (SOMG), hydroxylated soybean oil (HSO), and soybean oil methanol polyol (SOMP). The SOMG was a mixture of 90.1% of monoglyceride, 1.3% of diglyceride, and 8.6% of glycerol. The effect of various variables (polyol reactivity, water content curing temperature, type of catalyst, isocyanate, and surfactant) on the foam structure and properties were analyzed. SOMG had the highest reactivity because it was the only polyol‐containing primary hydroxyl (? OH) groups in addition to a secondary ? OH group. PU foams made with SOMG and synthetic polyol contained small uniform cells, whereas the other SO polyols produced foams with a mixture of larger and less uniform cells. The type of isocyanate also had an influence on the morphology, especially on the type of cells produced. The foam structure was found to be affected by the water and catalyst content, which controlled the foam density and the cure rate of the PU polymer. We observed that the glass transition (Tg) increased with the OH value and the type of diisocyanate. Also, we found that the degree of solvent swelling (DS) decreased as Tg increased with crosslink density. These results are consistent with the Twinkling Fractal Theory of Tg. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Fifty vegetable oil‐based polyols were characterized in terms of their hydroxyl number and their potential of replacing up to 50% of the petroleum‐based polyol in waterborne rigid polyurethane foam applications was evaluated. Polyurethane foams were prepared by reacting isocyanates with polyols containing 50% of vegetable oil‐based polyols and 50% of petroleum‐based polyol and their thermal conductivity, density, and compressive strength were determined. The vegetable oil‐based polyols included epoxidized soybean oil reacted with acetol, commercial soybean oil polyols (soyoils), polyols derived from epoxidized soybean oil and diglycerides, etc. Most of the foams made with polyols containing 50% of vegetable oil‐based polyols were inferior to foams made from 100% petroleum‐based polyol. However, foams made with polyols containing 50% hydroxy soybean oil, epoxidized soybean oil reacted with acetol, and oxidized epoxidized diglyceride of soybean oil not only had superior thermal conductivity, but also better density and compressive strength properties than had foams made from 100% petroleum polyol. Although the epoxidized soybean oil did not have any hydroxyl functional group to react with isocyanate, when used in 50 : 50 blend with the petroleum‐based polyol the resulting polyurethane foams had density versus compressive properties similar to polyurethane foams made from 100% petroleum‐based polyol. The density and compressive strength of foams were affected by the hydroxyl number of polyols, but the thermal conductivity of foams was not. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

15.
Rigid polyurethane (PU) foams were prepared using three North American seed oil starting materials. Polyol with terminal primary hydroxyl groups synthesized from canola oil by ozonolysis and hydrogenation based technology, commercially available soybean based polyol and crude castor oil were reacted with aromatic diphenylmethane diisocyanate to prepare the foams. Their physical and thermal properties were studied and compared using dynamic mechanical analysis and thermogravimetric analysis techniques, and their cellular structures were investigated by scanning electron microscope. The chemical diversity of the starting materials allowed the evaluation of the effect of dangling chain on the properties of the foams. The reactivity of soybean oil-derived polyols and of unrefined crude castor oil were found to be lower than that of the canola based polyol as shown by their processing parameters (cream, rising and gel times) and FTIR. Canola-PU foam demonstrated better compressive properties than Soybean-PU foam but less than Castor-PU foam. The differences in performance were found to be related to the differences in the number and position of OH-groups and dangling chains in the starting materials, and to the differences in cellular structure.  相似文献   

16.
以桐油(TO)为基本原料,先后经过酯交换反应、磷钨酸季铵盐催化环氧化反应、环氧开环反应生成桐油基阻燃多元醇(TOBP),并将制备的TOBP与异氰酸酯(PAPI)共混通过一步发泡的方式制备得到阻燃型硬质聚氨酯泡沫(FRPUR)。采用傅立叶变换红外光谱和氢谱对产物的结构进行表征,分析结果表明,已成功制备出环氧中间体和TOBP;热重测试结果表明TO、桐油甲酯(TOME)、环氧桐油甲酯(ETOME)和TOBP的热稳定性顺序依次为TOBPETOMETOTOME。通过发泡和极限氧指数、力学强度等测试手段,考察了桐油基PUR泡沫的阻燃性能和力学性能,并与由工业级聚醚多元醇制备的FRPUR硬泡进行比较。分析测试结果表明,由TOBP制备的FRPUR具有良好的阻燃性能和力学性能。  相似文献   

17.
以大豆油与环氧化剂反应,生成环氧大豆油;在催化剂的存在下与含活泼氢的亲核试剂发生环氧键开环反应,生成混合羟基脂肪酸甘油酯;加入醇并升温进行醇解反应,生成混合羟基脂肪酸单酯,即大豆油基多元醇。将大豆油基多元醇与异氰酸酯(MDI)等反应即可制得硬质聚氨酯泡沫塑料,具体配方为100份大豆油基多元醇,80~150份MDI、0.3~4份三乙醇胺、0.5~4份匀泡剂、0.5~3份蒸馏水。  相似文献   

18.
The study investigated an approach to incorporate modified epoxidized soy‐based vegetable oil polyol as a replacement for petroleum‐based polyether polyol and to substantially reduce the isocyanate loading in the rigid foam formulation. Noncatalytic polymerization of epoxidized bodied soybean oil and ethylene glycol (EG) was carried out in a closed batch reaction. Cleavage of the oxirane rings and hydroxyl group attachment at optimum conditions provided the desired polyol products. The polyols were characterized based on its hydroxyl numbers, acidity, viscosity, iodine number, and Gardner color index for quality purposes. Reactions of oxirane ring and EG were verified by spectroscopic FTIR. Crosslinking performance was evaluated by extractability analysis on the polyurethane (PU) elastomer wafers. Rigid foaming performed at 50 and 75% petroleum‐based polyether polyol replacements have shown excellent thermoinsulating and mechanical properties compared with epoxidized soybean oil (ESBO) alone or petroleum‐based polyether polyol alone. A reduction of up to 8% of the polymeric diphenylmethane diisocyanate was achieved using the synthesized ESBO‐EG‐based polyols. A higher average functionality polyol is key component to the reduction of isocyanate in PU synthesis. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
A new kind of polyol based on rape seed oil for use in rigid polyurethane foam was synthesized and characterized. The synthesis of such a polyol was divided into two steps. The first step was the hydroxylation of the double bonds existing in the long chains of the unsaturated aliphatic hydrocarbon of rape seed oil with peroxy acid. The second step was use of the alcoholysis of the hydroxylated rape seed oil with triethanolamine to increase the hydroxyl value of the product. The reaction process was monitored by means of a novel on‐line infrared spectrometer. Rigid polyurethane foam was produced with this rape seed oil based polyol and some physical properties of the foam were examined and compared with a reference foam. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 591–597, 2002; DOI 10.1002/app.10311  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号