首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Numerical simulation of sea water intrusion near Beihai, China   总被引:6,自引:0,他引:6  
 A leaky aquifer system occurs in the coastal plain near Beihai, China. Seawater intrusion into the confined aquifer took place along the northern coast. Chloride concentrations at some observation wells increased steadily from 1988 and were at their peak in 1993. A quasi-three-dimensional element model has been developed to simulate the spatial and temporal evolution of hydraulic heads and chloride concentrations of the groundwater near the northern coast. The simulation model was based on the transition zone approach, which requires simultaneous solution of the governing water flow and solute transport equations. An irregular grid of a quadrangle was used to discretize the flow domain. Various aquifer parameters were verified with the numerical model in order to obtain satisfactory matches between computed values and observed data from an investigation. Three pumpage schemes were designed to use the calibrated model for prediction of future changes in water levels and chloride concentrations in groundwater in the study area. Results show that seawater intrusion would worsen in the confined aquifer if the current rates of groundwater pumpage continue. The alternative, to eliminate pumpage in the intruded area and to moderate pumpage rates from water supply wells far from the seashore, may limit seawater intrusion significantly and is considered attractive in the area. Received: 27 September 1999 · Accepted: 27 December 1999  相似文献   

2.
Overexploitation of shallow aquifers on the Syrian coast, north of Latakia (Damsarkho) for irrigation and tourism has caused an intrusion of seawater. The seawater intrusion into this aquifer has been presented by a three-dimensional finite element model using the FEFLOW numerical code. This conceptual model is based on field and laboratory data collected during the period 1966–2003. Meteoric infiltration and flows from the adjoining carbonate aquifer recharge the aquifer; natural outflow occurs through a diffuse flow into the sea; and artificial outflow occurs through intensive extraction of groundwater from wells. Water exchanges in the aquifer occur naturally (leakage) and artificially (multi-screened wells). The model was calibrated for transient conditions. The model helped establish that seawater intrusion is essentially due to withdrawals near the coast during the irrigation season and that it mainly occurs in the Damsarkho plain. The effects of hypothetical aquifer exploitation were assessed in terms of salt budget.  相似文献   

3.
Seawater intrusion is one of the most serious environmental problems in many coastal regions all over the world. Mixing a small quantity of seawater with groundwater makes it unsuitable for use and can result in abandonment of aquifers. Therefore, seawater intrusion should be prevented or at least controlled to protect groundwater resources. This paper presents development and application of a simulation‐optimization model to control seawater intrusion in coastal aquifers using different management scenarios; abstraction of brackish water, recharge of freshwater, and combination of abstraction and recharge. The model is based on the integration of a genetic algorithm optimisation technique and a coupled transient density‐dependent finite element model. The objectives of the management scenarios include determination of the optimal depth, location and abstraction/recharge rates for the wells to minimize the total costs for construction and operation as well as salt concentrations in the aquifer. The developed model is applied to analyze the control of seawater intrusion in a hypothetical confined coastal aquifer. The efficiencies of the three management scenarios are examined and compared. The results show that combination of abstraction and recharge wells is significantly better than using abstraction wells or recharge wells alone as it gives the least cost and least salt concentration in the aquifer. The results from this study would be useful in designing the system of abstraction/recharge wells to control seawater intrusion in coastal aquifers and can be applied in areas where there is a risk of seawater intrusion. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The Lei-Qiong Depression Zone, near the Leizhou Peninsula in southern China, consists of unconsolidated sediments of 500-3,000 m thickness. Groundwater occurs in a multi-aquifer system in the Leizhou Peninsula. The aquifers receive recharge from precipitation, canal and reservoir infiltration, and discharge mainly through subterranean drainage into the sea. Artificial pumping for drinking and agricultural purposes is another way of groundwater discharge. Groundwater development along the coast faces the threat of seawater intrusion. A quasi-three-dimensional finite element model, containing 457 nodes and 833 elements, has been used to simulate the spatial and temporal distribution of groundwater levels in the three-aquifer system. Verification of various aquifer parameters and boundary conditions was performed with the simulation model. Linear programming models have been developed for groundwater exploitation within the two confined aquifers. The objective function of the models is to maximize the total groundwater pumpage from the confined aquifers. Control of seawater intrusion is examined by restricting the water levels at points along the coast and the withdrawal rates in coastal management cells. A response matrix approach was used in the optimization models. The response matrix was obtained from the simulation model by forecasting drawdown produced by pumping at a unit impulse discharge. Groundwater development in the Leizhou Peninsula can be primarily optimized by allocating the pumping rates of the management cells.  相似文献   

5.
Seawater intrusion in the Salalah plain aquifer,Oman   总被引:2,自引:0,他引:2  
Salalah is situated on a fresh water aquifer that is replenished during the annual monsoon season. The aquifer is the only source of water in Salalah city. The rainfall and mist precipitation in the Jabal AlQara recharges the plain with significant renewable fresh groundwater that has allowed agricultural and industrial development to occur. In Salalah city where groundwater has been used extensively since the early 1980s for agricultural, industrial and municipal purposes, the groundwater has been withdrawn from the aquifer more rapidly than it can be replenished by natural recharge. The heavy withdrawal of large quantities of the groundwater from the aquifer has led to the intrusion of seawater. Agricultural activities utilize over 70% of the groundwater. For the study of the saltwater intrusion, the area has been divided into four strips, A, B, C and D, on the basis of land-use in the area. Water samples were collected from 18 water wells. Chemical analysis of major ions and pollution parameters in the groundwater was carried out and compared to the previous observed values. The electrical conductivity and chloride concentrations were highest in the agricultural and residential strips and Garziz grass farm. Before 1992 the aquifer was in a steady state, but presently (2005) the groundwater quality in most of the agricultural and residential strips does not meet drinking water standards. In addition, model simulations were developed with the computer code MODFLOW and MT3DMS for solute transport to determine the movement of the freshwater/saltwater interface. The study proposes the protection of the groundwater in Salalah plain aquifer from further encroachment by artificial recharge with reclaimed water, preferably along the Salalah coastal agricultural strip. This scheme can also be applied to other regions with similar conditions.  相似文献   

6.
Ongoing hydrogeological research aims to develop a correct management model for the Plio-Pleistocene multi-aquifer system of the Albegna River coastal plain (southern Tuscany, Italy); overexploitation of this aquifer for irrigation and tourism has caused seawater intrusion. The conceptual model is based on field and laboratory data collected during the 1995–2003 period. Meteoric infiltration and flows from the adjoining carbonate aquifer recharge the aquifer. Natural outflow occurs through a diffuse flow into the sea and river; artificial outflow occurs through intensive extraction of groundwater from wells. Water exchanges in the aquifer occur naturally (leakage, closing of aquitard) and artificially (multiscreened wells). The aquifer was represented by a three-dimensional finite element model using the FEFLOW numerical code. The model was calibrated for steady-state and transient conditions by matching computed and measured piezometric levels (February 1995–February 1996). The model helped establish that seawater intrusion is essentially due to withdrawals near the coast during the irrigation season and that it occurs above all in the Osa-Albegna sector, as well as along the river that at times feeds the aquifer. The effects of hypothetical aquifer exploitation were assessed in terms of water budget and hydraulic head evolution.  相似文献   

7.
Optimal Groundwater Development in Coastal Aquifers Near Beihai, China   总被引:1,自引:0,他引:1  
INTRODUCTIONThe city of Beihai,located on the south coast ofGuangxi,China,relies heavily on groundwater for its potablewater supply and agricultural irrigation.With rapid increasein population (for instance,from 134 0 0 0 in 1987to 47930 0in1995 ) and in developm ent program s,the demand for freshwater has been growing. Approxim ately 170 0 0 0 m3/ d ofgroundwater has been pumped from the productive coastalaquifers in recent years.Contamination of the fresh water inthe coastal aquifers b…  相似文献   

8.
The Wadi Watir delta, in the arid Sinai Peninsula, Egypt, contains an alluvial aquifer underlain by impermeable Precambrian basement rock. The scarcity of rainfall during the last decade, combined with high pumping rates, resulted in degradation of water quality in the main supply wells along the mountain front, which has resulted in reduced groundwater pumping. Additionally, seawater intrusion along the coast has increased salinity in some wells. A three-dimensional (3D) groundwater flow model (MODFLOW) was calibrated using groundwater-level changes and pumping rates from 1982 to 2009; the groundwater recharge rate was estimated to be 1.58?×?106 m3/year. A variable-density flow model (SEAWAT) was used to evaluate seawater intrusion for different pumping rates and well-field locations. Water chemistry and stable isotope data were used to calculate seawater mixing with groundwater along the coast. Geochemical modeling (NETPATH) determined the sources and mixing of different groundwaters from the mountainous recharge areas and within the delta aquifers; results showed that the groundwater salinity is controlled by dissolution of minerals and salts in the aquifers along flow paths and mixing of chemically different waters, including upwelling of saline groundwater and seawater intrusion. Future groundwater pumping must be closely monitored to limit these effects.  相似文献   

9.
A modeling study of seawater intrusion in Alabama Gulf Coast,USA   总被引:4,自引:0,他引:4  
A numerical model of variable-density groundwater flow and miscible salt transport is developed to investigate the extent of seawater intrusion in the Gulf coast aquifers of Alabama, USA. The SEAWAT code is used to solve the density-dependent groundwater flow and solute transport governing equations. The numerical model is calibrated against the observed hydraulic heads measured in 1996 by adjusting the zonation and values of hydraulic conductivity and recharge rate. Using the calibrated model and assuming all the hydrogeologic conditions remain the same as those in 1996, a predictive 40-year simulation run indicates that further seawater intrusion into the coastal aquifers can occur in the study area. Moreover, the predicted intrusion may be more significant in the deeper aquifer than the shallower ones. As the population continues to grow and the demand for groundwater pumping intensifies beyond the 1996 level, it can be expected that the actual extent of seawater intrusion in the future would be more severe than the model prediction. Better strategies for groundwater development and management will be necessary to protect the freshwater aquifers from contamination by seawater intrusion.
Jin LinEmail:
  相似文献   

10.
基于FEFLOW的海水入侵数值模拟   总被引:3,自引:1,他引:2  
卢薇  朱照宇  刘卫平 《地下水》2010,32(3):19-21,129
在系统分析珠江口东岸地区地质及水文地质条件的基础上,建立了研究区海水入侵三维溶质模型,利用基于有限元原理的FEFLOW软件对建立的模型进行求解,用地下水位和浓度的动态观测资料对模型进行了识别和校验。运用识别后的模型预测了在不同开采条件下,研究区海水入侵的趋势。研究结果表明减少地下水开采量,海水入侵面积可逐步减少,入侵可得到有效控制;在减少开采量的情况下,相较于基岩裂隙含水层,第四系含水层海水入侵面积收缩较慢。  相似文献   

11.
Modeling of groundwater flow for Mujib aquifer, Jordan   总被引:4,自引:0,他引:4  
Jordan is an arid country with very limited water resources. Groundwater is the main source for its water supply. Mujib aquifer is located in the central part of Jordan and is a major source of drinking water for Amman, Madaba and Karak cities. High abstraction rates from Mujib aquifer during the previous years lead to a major decline in water levels and deterioration in groundwater quality. Therefore, proper groundwater management of Mujib aquifer is necessary; and groundwater flow modeling is essential for proper management. For this purpose, Modflow was used to build a groundwater flow model to simulate the behavior of the flow system under different stresses. The model was calibrated for steady state condition by matching observed and simulated initial head counter lines. Drawdown data for the period 1985–1995 were used to calibrate the transient model by matching simulated drawdown with the observed one. Then, the transient model was validated by using drawdown data for the period 1996–2002. The results of the calibrated model showed that the horizontal hydraulic conductivity of the B2/A7 aquifer ranges between 0.001 and 40m/d. Calibrated specific yield ranges from 0.0001 to 0.15. The water balance for the steady state condition of Mujib aquifer indicated that the total annual direct recharge is 20.4 × 106m3, the total annual inflow is 13.0 × 106 m3, springs discharge is 15.3 × 106 m3, and total annual outflow is 18.7 × 106 m3. Different scenarios were considered to predict aquifer system response under different conditions. The results of the sensitivity analysis show that the model is highly sensitive to horizontal hydraulic conductivity and anisotropy and with lower level to the recharge rates. Also the model is sensitive to specific yield  相似文献   

12.
Seawater intrusion is a major problem to freshwater resources especially in coastal areas where fresh groundwater is surrounded and could be easily influenced by seawater. This study presents the development of a conceptual and numerical model for the coastal aquifer of Karareis region (Karaburun Peninsula) in the western part of Turkey. The study also presents the interpretation and the analysis of the time series data of groundwater levels recorded by data loggers. The SEAWAT model is used in this study to solve the density-dependent flow field and seawater intrusion in the coastal aquifer that is under excessive pumping particularly during summer months. The model was calibrated using the average values of a 1-year dataset and further verified by the average values of another year. Five potential scenarios were analyzed to understand the effects of pumping and climate change on groundwater levels and the extent of seawater intrusion in the next 10 years. The result of the analysis demonstrated high levels of electrical conductivity and chloride along the coastal part of the study area. As a result of the numerical model, seawater intrusion is simulated to move about 420 m toward the land in the next 10 years under “increased pumping” scenario, while a slight change in water level and TDS concentrations was observed in “climate change” scenario. Results also revealed that a reduction in the pumping rate from Karareis wells will be necessary to protect fresh groundwater from contamination by seawater.  相似文献   

13.
Coastal aquifers are considered as major sources for freshwater supply worldwide, especially in arid zones. The weak rainfall as well as the intensive extraction of groundwater from coastal aquifers reduce freshwater budget and create local water aquifer depression, causing both seawater intrusion and a threat to groundwater. This phenomenon was observed in the Jerba Island which is located in southeast Tunisia. Jerba??s unconfined aquifer shows high values of groundwater salinity reaching, locally, 17?g/l and a strong contrast between some zones of the aquifer. High pumping rates and weak recharge disturb the natural equilibrium between fresh and saline water causing water salinization in most areas of the island. This study aims at establishing the salinity map of the aquifer and identifying the origin of groundwater salinization. The salinity map shows that zones characterized by low groundwater salinity are located in the center of the study area. High groundwater salinities are observed near the coast and in some parts having low topographic and piezometric levels. Groundwater geochemical characterization, and Br/Cl and Na/Cl ratios suggest that the origin of abnormal salinity is seawater intrusion. Considering groundwater salinity values and Br concentrations, a seawater intrusion map is established. It shows that many areas of the unconfined aquifer are contaminated by mixed groundwater and seawater. The statistical analysis demonstrates that high mineralization of the groundwater is due to gypsum and carbonate dissolution coupled with the mixed groundwater and seawater in many areas.  相似文献   

14.
 The Gaza Strip coastal aquifer is under severe hydrological stress due to over-exploitation. Excessive pumping during the past decades in the Gaza region has caused a significant lowering of groundwater levels, altering in some regions the normal transport of salts into the sea and reversing the gradient of groundwater flow. The sharp increase in chloride concentrations in groundwater indicates intrusion of seawater and/or brines from the western part of the aquifer near the sea. Simulations of salt-water intrusion were carried out using a two-dimensional density-dependent flow and transport model SUTRA (Voss 1984). This model was applied to the Khan Yunis section of the Gaza Strip aquifer. Simulations were done under an assumption that pumping rates increase according to the rate of population growth, or about 3.8% a year. Model parameters were estimated using available field observations. Numerical simulations show that the rate of seawater intrusion during 1997–2006 is expected to be 20–45 m/yr. The results lead to a better understanding of aquifer salinization due to seawater intrusion and give some estimate of the rate of deterioration of groundwater. Received, September 1997 Revised, January 1998, July 1998 Accepted, August 1998  相似文献   

15.
The present study concerns the application of a numerical approach to describe the influence of anthropogenic modifications in surface flows (operation of a projected reservoir) on the freshwater-seawater relationships in a downstream coastal aquifer which has seasonal seawater intrusion problems (River Verde alluvial aquifer, Almuñécar, southern Spain). A steady-state finite element solution to the partial differential equation governing the regional motion of a phreatic surface and the resulting sharp interface between fresh water and salt water was used to predict the regional behavior of the River Verde aquifer under actual surface flow conditions. The present model approximates, with simple triangular elements, the regional behavior of a coastal aquifer under appropriate sinks, sources, Neumann and open boundary conditions. A steady-state solution to this numerical approach has been shown to precisely calculate freshwater heads, saltwater thicknesses, and freshwater discharges along steeply sloping coasts. Hence, the adequate treatment and interpretation of the hydrogeological data which are available for the River Verde aquifer have been of main concern in satisfactorily applying the proposed numerical model. Present simulated conditions consider steady-state yearly averaged amounts of external supplies of fresh water in order to determine the influences of the projected Otívar reservoir on the further behavior of the River Verde coastal aquifer. When recharges occur at the coastline, essentially because of freshwater deficits due to groundwater overexploitation, a hypothesis of mixing for the freshwater-saltwater transition zone is made in order to still allow the model to continue calculating groundwater heads under the sea level, and, as a consequence, the resulting seawater intrusion and recharges of saltwater from the sea. Simulations show that a considerable advance in seawater intrusion would be expected in the coastal aquifer if current rates of groundwater pumping continue and a significant part of the runoff from the River Verde is channeled from the Otívar reservoir for irrigation purposes.  相似文献   

16.
The Batinah coastal plain in northern Oman has experienced a severe deterioration of groundwater quality due to seawater intrusion as a result of excessive groundwater abstraction for agricultural irrigation. Upgrading all farms to fully automated irrigation technology based on soil moisture sensors may significantly reduce the water demand and lead to recovering groundwater levels. This study compares the effects of smart irrigation technology, recharge dams, and a combination of both on seawater intrusion in the coastal aquifer of the Batinah. A groundwater flow and transport model is used to simulate the effect of reduced pumping rates on seawater intrusion for various intervention scenarios over a simulation period of 30 years, and an economic analysis based on cost-benefit analysis is conducted to estimate the potential benefits. Results indicate that a combination of smart irrigation and recharge dams may prevent further deterioration of groundwater quality over the next 30 years. In conjunction with increased efficiency, this combination also generates the highest gross profit. This outcome shows that the problem of seawater intrusion needs to be tackled by a comprehensive, integrated intervention strategy.  相似文献   

17.
山东烟台夹河中、下游地区海水入侵三维水质数值模拟研究   总被引:17,自引:0,他引:17  
建立了三维变密度对流弥散水质数学模型来研究山东省烟台夹河中、下游地区咸淡水界面的运移规律。以四面体为基本离散单元 ,推导出三维海水入侵变密度水质模型求解的数值方法 ,其中水流方程求解时运用了迦辽金有限单元法。溶质运移方程求解时运用了欧拉拉格朗日混合方法 ,将对流项与弥散项分离 ,用传统迦辽金有限元方法求解弥散项 ;采用自适应MOC MMOC法求解对流项 ,以消除人工过量和数值弥散。根据地下水的潮汐效应观测信息 ,确定了含水系统的海底延伸边界 ;利用该地区地下水水头及水质长观资料识别了模型的水文地质参数 ,探讨了夹河地区海水入侵的原因 :认为夹河下游地区滨海地带地下水过量开采是造成烟台地区海水入侵的主要原因。此外 ,海水随潮定期地倒灌进入夹河 ,通过局部岩性天窗侵入淡水含水层加剧了沿夹河河床两侧地下水的咸化。同时还预测了几种情况下地下水的水质演化趋势 ,为防止和减轻夹河地区海水入侵提供合理、科学的依据。  相似文献   

18.
Salinization in coastal aquifers is usually related to both seawater intrusion and water–rock interaction. The results of chemical and isotopic methods were combined to identify the origin and processes of groundwater salinization in Daguansha area of Beihai, southern China. The concentrations of the major ions that dominate in seawater (Cl?, Na+, Ca2+, Mg2+ and SO 4 2– ), as well as the isotopic content and ratios (2H, 18O, 87Sr/86Sr and 13C), suggest that the salinization occurring in the aquifer of the coastal plain is related to seawater and that the prevailing hydrochemical processes are evaporation, mixing, dissolution and ion exchange. For the unconfined aquifer, groundwater salinization has occurred in an area that is significantly influenced by land-based sea farming. The integrated impacts of seawater intrusion from the Beibuwan Gulf and infiltration of seawater from the culture ponds are identified in the shallowest confined aquifer (I) in the middle of the area (site BBW2). Leakage from this polluted confined aquifer causes the salinization of groundwater in the underlying confined aquifer (II). At the coastal monitoring site (BBW3), confined aquifer I and lower confined aquifer II are heavily contaminated by seawater intrusion. The weak connectivity between the upper aquifers, and the seaward movement of freshwater, prevents saltwater from encroaching the deepest confined aquifer (III). A conceptual model is presented. Above all, understanding of the origin and processes of groundwater salinization will provide essential information for the planning and sustainable management of groundwater resources in this region.  相似文献   

19.
Industrially sourced dense non-aqueous phase liquids (DNAPLs) contaminated an alluvial aquifer in France decades ago. The location(s) and nature of the pollution source zone(s) were unknown, and the dissolved concentrations of volatile organic compounds in the monitoring wells varied greatly with time. The aquifer was in hydraulic equilibrium with an artificial canal whose water level was highly variable (up to 5 m). These variations propagated into the aquifer, causing changes in the groundwater flow direction; a transient numerical model of flow and solute transport showed that they correlate with the concentration variations because the changes in the flow direction resulted in the contaminant plume shifting. The transient hydrogeological numerical model was built, taking into account solvent biodegradation with first-order chain, since biodegradation has a significant influence on the pollutant concentration evolution. The model parameterization confirms the position of the source zones among the potential troughs in the bedrock where DNAPLs could have accumulated. The groundwater model was successfully calibrated to reproduce the observed concentration variations over several years and allowed a rapid validation of the hypotheses on the functioning of the polluted system.  相似文献   

20.
Integrated hydrogeochemical and geophysical methods were used to study the salinity of groundwater aquifers along the coastal area of north Kelantan. For the hydrogeochemical investigation, analysis of major ion contents of the groundwater was conducted, and other chemical parameters such as pH and total dissolved solids were also determined. For the geophysical study, both geoelectrical resistivity soundings and reflection seismic surveys were conducted to determine the characteristics of the subsurface and groundwater contained within the aquifers. The pH values range from 6.2 to 6.8, indicating that the groundwater in the study area is slightly acidic. Low content of chloride suggests that the groundwater in the first aquifer is fresh, with an average concentration of about 15.8 mg/l and high geoelectrical resistivity (>45 ohm m). On the other hand, the groundwater in the second aquifer is brackish, with chloride concentration ranging from 500 mg/l to 3,600 mg/l and very low geoelectrical resistivity (<45 ohm m) as well as high concentration of total dissolved solids (>1,000 mg/l). The groundwater in the third aquifer is fresh, with chloride concentrations generally ranging from 2 mg/l to 210 mg/l and geoelectrical resistivity of greater than 45 ohm m. Fresh and saltwater interface in the first aquifer is generally located directly in the area of the coast, but, for the second aquifer, both hydrogeochemical and geoelectrical resistivity results indicate that the fresh water and saltwater interface is located as far as 6 km from the beach. The considerable chloride ion content initially suggests that the salinity of the groundwater in the second aquifer is probably caused by the intrusion of seawater. However, continuous monitoring of the chloride content of the second aquifer indicated no significant changes with time, from which it can be inferred that the salinity of the groundwater is not affected by seasonal seawater intrusion. Schoeller diagrams illustrate that sulphate concentrations of the groundwater of the second aquifer are relatively low compared to those of the recent seawater. Therefore, this result suggests that the brackish water in the second aquifer is probably from ancient seawater that was trapped within the sediments for a long period of time, rather than due to direct seawater intrusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号