首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A factorial design approach technique was adopted to understand the high stress abrasive behaviour of a diamond reinforced composite coating for various compositions at different loads and abrasive sizes. A linear regression equation was developed and used for understanding the influence of the diamond concentration, applied load, and abrasive sizes on the wear response. A negative value of the coefficient associated with diamond concentration, together with its interactions with the applied load; suggest that the wear rate decreases with increasing diamond concentration. By contrast, a positive coefficient suggests an increase in wear rate due to an increase in related factors such as the applied load and abrasive size. The coefficients associated with the interactions of the parameters are insignificant by comparison with the individual parameters, thereby demonstrating that the interaction effect of these parameters towards the wear rate is insignificant. The wear rate may be extracted in terms of the diamond concentration, the applied load and the abrasive grit size using the above linear regression equation.  相似文献   

2.
In this study, the automated classification system, developed previously by the authors, was used to classify wear particles. Three kinds of wear particles, fatigue, abrasive and adhesive, were classified. The fatigue wear particles were generated using an FZG back-to-back gear test rig. A pin-on-disk tribometer was used to generate the abrasive and adhesive wear particles. Scanning electron microscope (SEM) images of wear particles were acquired, forming a database for further analysis. The particle images were divided into three groups or classes, each class representing a different wear mechanism. Each particle class was first examined visually. Next, area, perimeter, convexity and elongation parameters were determined for each class using image analysis software and the parameters were statistically analysed. Each particle class was then assessed using the automated classification system, based on particle surface texture. The results of the automated particle classification were compared to both the visual assessment of particle morphology and the numerical parameter values. The results showed that the texture-based classification system was a more efficient and accurate way of distinguishing between various wear particles than classification based on size and shape of wear particles. It seems that the texture-based classification method developed has great potential to become a very useful tool in the machine condition monitoring industry.  相似文献   

3.
Friction and wear of LiF single crystals in unidirectional and bidirectional motion have been studied. The friction coefficient and wear are found to be higher under unidirectional motion. The experimental evidence of the dislocation structure around the wear track is presented. Friction and wear of LiF single crystals are determined both by the Bauschinger’s effect and by redistribution of the contact spots due to plowing and adhesion of wear particles to rubbing surface.  相似文献   

4.
Diamond and diamond-based coatings have long been studied for their exceptional properties. Although a great deal of research has been carried out in this field, little is known about their tribological wear behavior. In the present work, diamond reinforced composite (DRC) coatings of varying diamond content was deposited on mild steel substrates using both oxy-acetylene (OA) and high velocity oxy fuel (HVOF) thermal spraying techniques. The high stress abrasive wear behavior of these coatings is studied by performing two body abrasion tests for varying experimental parameters. It is observed that the HVOF-sprayed coatings suffered abrasion at a relatively low wear rate. The reasons for variations observed in the wear rate as a function of displacement during abrasion and grit size could be attributed to the deterioration of abrasive particles and the particle size effect respectively. While the disparity in the wear rates with respect to composition of the coatings was primarily controlled by the diamond content in the coating. The abrasive wear mechanism was found to be the same in both the coatings except that the coating deposited by HVOF spray technique, offered better abrasion resistance and therefore abraded at a slower rate. This is possibly due to lower porosity in the coating and higher bond strength between reinforced diamond particulates and the bronze matrix in HVOF-sprayed specimens.  相似文献   

5.
In order to improve such a widely used microtribological testing procedure as surface scratching by an AFM diamond tip, an experimental study has been carried out using single-crystalline silicon as the tested material. Wear of the AFM diamond tip under scratching was observed by a decrease in the scratch depth with increasing wear cycles and by the direct imaging of the diamond tip shape using a Si3N4 AFM tip. It was shown that the current widely used experimental method, which assumes the diamond tip to be non-wearable, introduces uncontrollable error into the obtained values for the tested material's wear rate. The harder the tested material, the larger may be the tip wear, and, therefore, the bigger may be its effect on the obtained wear rate values. The specific wear rates for the diamond tip and a silicon wafer were estimated to be 1.4 × 10-9 and 4.5 × 10-4 mm3/(N m), respectively.  相似文献   

6.
Polyimide-based composites containing fine diamond powder were fabricated using spark plasma sintering. The based material was polyimide (PI) containing a small amount of polytetrafluoroethylene (PTFE). Two types of diamond powder were used: one synthesized by statically high pressure, i.e., high-pressure diamond (HD), and the other synthesized by shock compression, i.e., shock-compression diamond (SD). We evaluated their tribological properties using a reciprocating friction tester in water and air using an Al2O3 mating ball. Adding HD to the polyimide-PTFE-based material decreased the composite's friction in water, but the effect of this addition in air was negligible. The specific wear rate of composites with different HD content was similar to that of the based material alone in water, while the wear of composites decreased with the addition of diamond in air. The effect of diamond powder size on friction and wear of composites was generally low in both water and air. The addition of SD decreased the friction coefficient of composites, but SD content only negligibly affected the friction in water and air. The specific wear rate was minimal at SD content of 5 vol.%, when diamond content was varied. Wear was almost independent of diamond powder size. SD reduced composite friction and wear better than HD; regardless of environment, its friction coefficient was less than 0.1 and the specific wear rate was in the level of 10−7 mm3/N m in both water and air.  相似文献   

7.
The ultra-precision dicing of hard and brittle materials causes high wear on the abrasive tool which results in the deterioration of blade cross section as well as the decrease of diamond grain exposure. Resin-bonded diamond blades are used due to their in-process self-sharpening capability. Nevertheless, the shape of the blade cross section generated by self-sharpening is random which leads to poor accuracy when precise grooves need to be produced. Metal-bonded diamond blades feature higher tool lifetime and shape accuracy compared to resin-bonded blades, but are not capable of performing self-sharpening. In this study, the laser dressing of metal-bonded diamond blades is investigated to enable their use in the ultra-precision dicing of hard and brittle materials by continuous laser dressing. We investigated laser dressing with and without the presence of cooling water. The sharpness (grain exposure) after dressing is measured by the cutting face surface roughness. The dicing performance is evaluated by observing the dicing results in terms of cutting depth consistency and by monitoring the spindle power during dicing. Dicing blades which have been laser dressed in an environment with coolant feature less grain exposure than dicing blades which have been laser dressed in dry condition. The dicing results show an improvement in the sharpness and durability of laser-dressed dicing blades in comparison with new or conventionally dressed blades. The ability to apply and perform laser dressing on a dicing machine in an environment with coolant shows the feasibility of laser technology for continuous dressing.  相似文献   

8.
In the grinding of high quality fused silica parts with complex surface or structure using ball-headed metal bonded diamond wheel with small diameter,the existing dressing methods are not suitable to dress the ball-headed diamond wheel precisely due to that they are either on-line in process dressing which may causes collision problem or without consideration for the effects of the tool setting error and electrode wear.An on-machine precision preparation and dressing method is proposed for ball-headed diamond wheel based on electrical discharge machining.By using this method the cylindrical diamond wheel with small diameter is manufactured to hemispherical-headed form.The obtained ball-headed diamond wheel is dressed after several grinding passes to recover geometrical accuracy and sharpness which is lost due to the wheel wear.A tool setting method based on high precision optical system is presented to reduce the wheel center setting error and dimension error.The effect of electrode tool wear is investigated by electrical dressing experiments,and the electrode tool wear compensation model is established based on the experimental results which show that the value of wear ratio coefficient K’ tends to be constant with the increasing of the feed length of electrode and the mean value of K’ is 0.156.Grinding experiments of fused silica are carried out on a test bench to evaluate the performance of the preparation and dressing method.The experimental results show that the surface roughness of the finished workpiece is 0.03 μm.The effect of the grinding parameter and dressing frequency on the surface roughness is investigated based on the measurement results of the surface roughness.This research provides an on-machine preparation and dressing method for ball-headed metal bonded diamond wheel used in the grinding of fused silica,which provides a solution to the tool setting method and the effect of electrode tool wear.  相似文献   

9.
Diamond tools are used in ultra precision machining for their outstanding hardness and crystalline structure, which enable the fabrication of very sharp cutting edges. Single crystal diamond tools are thus extremely useful to machine electroless nickel-plated dies which are generally used for making molds for optical components. This paper deals with the objective to evaluate the performance and suitability of a single crystal diamond tool during microgrooving on electroless nickel plated workpieces. Effects of different machining parameters on overall machining performance were also investigated. The experimental results revealed that long distance (50 km) machining of microgrooves on electroless nickel is possible with a single crystal diamond tool without any significant tool wear. Some groove wear on the rake face were found after machining 28.5 km. No evidence of chipping or wear had been observed on the flank face during the total machining length. The surface roughness range of the machined workpieces was found to be 4–6 nm. Both thrust and cutting components of the machining forces showed an increasing trend with increasing machining distance, though magnitude of the thrust forces were found to increase more than the cutting forces.  相似文献   

10.
郝佳丽 《润滑与密封》2023,48(12):55-61
为研究微织构形状对人工髋关节表面摩擦特性的影响,在人工髋关节表面分别设计仿生菱形织构、圆柱形织构和圆环形织构,以雷诺方程为理论研究基础建立流体动压润滑模型,用ANSYS Fluent进行数值模拟,得到微织构表面润滑油膜的平均承载力和摩擦因数,并比较不同织构形状的摩擦学性能。结果表明:在所选织构参数、工况参数范围内,平均承载力随着面积率增大以及滑动速度的提高均呈现上升趋势,在面积率为25%、滑动速度为0.3 m/s时达到最大;摩擦因数随着织构面积率的增大而呈下降趋势,在面积率25%达到最小值,摩擦因数与滑动速度的关系则因织构形状的不同存在一定的差异;研究的3种形状微织构中,仿生菱形织构的摩擦学性能最佳。因此合理选择织构形状可以减少人工髋关节摩擦副表面间的磨损。  相似文献   

11.
This study examines the relationship between generated airborne particles and wear rate in the wheel–rail contact. The wheel–rail contact is experimentally simulated by using pin‐on‐disc testing to determine the difference in wear rate between selected contact conditions. Wear is discussed both in tribological terms and by using the wear categories prevalent in the railway industry, namely, mild, severe and catastrophic wear. The discussion is based on wear depth, the coefficient of friction, topographical measurements and measurements of airborne particles generated in the contact. The tests were performed under selected loading conditions representative of different contact conditions in a real wheel–rail contact. The results indicate that wear rates vary with the contact conditions arising from different types of triggered wear transitions. This is emphasised by the number and size of the airborne particles generated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
烧结工艺对铁基金刚石圆锯磨块磨损特性的影响   总被引:2,自引:1,他引:1  
研究了烧结工艺方法与烧结工艺参数对铁基金刚石圆锯磨块机械性能的影响,并对不同的烧结工艺方法、烧结工艺参数条件下的铁基金刚石圆锯磨块对花岗岩的磨损特性及其磨损机理进行了研究。试验结果表明,在切削硬石材时,热压烧结的铁基金刚石圆锯磨块其磨耗比小于冷压烧结的铁基金刚石圆锯磨块,热压烧结的铁基金刚石圆锯磨块的机械性能与其耐磨性能之间存在一个最佳匹配,当磨块胎体的磨损略快于金刚石的磨损时磨损特性最好。  相似文献   

13.
为解决锌铝基耐蚀涂层在高速、强摩擦等特殊服役条件下硬度低、耐磨减摩性能差等问题,尝试通过添加金刚石粒子对其进行强化。研究了金刚石粒子及其添加量对涂层硬度、摩擦因数、耐磨性能、腐蚀电流密度和微观组织的影响。结果表明:添加1%0~7%0的金刚石粒子来强化传统锌铝基耐蚀涂层是可行的,不但能够显著提高涂层的硬度和摩擦学性能,而且没有对涂层的耐蚀性造成不利影响。  相似文献   

14.
15.
P. Kulu  R. Tarbe  H. Kerdi  D. Goljandin 《Wear》2009,267(11):1832-1837
The results of the milling experiments of different mineral ores and laboratory wear testing with different abrasives have shown that the abrasivity of treated materials does not depend only on their hardness, but, to a great extent, on the particle shape of the materials. The grindability of materials milled by collision depends on the properties of materials as well on the treatment parameters (specific treatment energy). The aims of this investigation were (1) to study the abrasivity and the grindability of different minerals (granite, quartzite, etc.) and (2) to predict the relative wear resistance of the materials prospective for the grinding media of milling equipment, using a centrifugal type impact wear tester. Experiments conducted with abrasives of different hardness and with particles of different shape have shown that the wear rate of materials used as wear resistant materials in grinding devices depend more on the angularity of abrasive particles than on their hardness. It was shown that the grindability depends more on the composition and properties (fracture toughness, homogeneity of the structure) than on the hardness of the mineral ores. The main size reduction occurs at first collision, later in the multiple milling of mineral materials particle rounding takes place. The angularity parameter has good correlation with the wear rate in the case of the studied commercial steels as well as with metal matrix composites. Experiments with cermets showed that erosion does not practically depend on abrasive particle shape.  相似文献   

16.
Wear and mileage performance are the foremost performances for truck bus radial (TBR) tires. There are a lot of researches about the tire wear performance as well as the contact patch phenomenon by using finite element analysis (FEA) method or testing. But there is little published data on the correlations between the footprint geometry and the tread wear performance of tires. In this paper, an experiment on tire-ground performance of TBR tires is carried out by using Tekscan. The real-time changes of contact-area pressure distribution that occurred during the process of continuous load and unload are recorded. Three types of tires that act differently in behavior under normal usage are analyzed. A new method of researching in tire tread wear, which focuses on the geometrical characters of the footprint, is put forward. The experimental results of the three tires are described by using footprint geometrical characters. On the basis of studying the changing laws of footprint geometrical characters during the loading process and considering consumer survey and factory feedback information, the correlations between the geometrical character of footprints and tread destruction form are built. The analyzed results show that a greater contact area coefficient and a steady coefficient of contact result in a better wear performance for TBR tires. The footprint-shape coefficient changing laws in the process of loading are found to have a very good coincidence with the tread wear of the three types of tires. Tires with a smaller footprint-shape coefficient are likely to have an average tread wear while avoiding the shoulder wear first. The proposed research provides a new solution to predict tire-ground performance at the point of footprint and several useful references for improving tire design.  相似文献   

17.
A. Ersoy 《Wear》2005,258(9):1422-1436
Circular diamond saw of wear is affected by a range of factors. However, the principal factors that require consideration in predicting wear rates are the type of diamond saw, the saw operating parameters and the characteristics of the cut rock. A single rock property index is not a sufficient basis for predicting wear performance. A variety of ten types of rocks were cut in the laboratory with two types of circular diamond saw using a fully instrumented cutting rig at different feed rates, depths of cut and at constant peripheral speed. Quantitative determinations of a wide range of textural, mechanical and intact properties of the rocks were also made. Wear (weight loss and height loss) of saw were measured after a series of test in each rock type. The wear of saws can take many forms, however, the most common wear mechanism operating on saws during the rock cutting is abrasion. Impact loading and impact fatigue also accelerates the wear of saws. The analysis indicated that the statistical model for the rock saws have potential for practical application. The application of multiple regression analysis to diamond saw performance is novel and the technique shows promise for the prediction of saw wear in specific rock types. The ability of the technique to provide a mathematical characterization of the performance of new cutting saws in the specific rocks may prove to value to saw manufacturers and users.  相似文献   

18.
Abstract

Tribological performance of subnano to nanometre thick Ag layers deposited on Si(111) has been examined under ultra high vacuum conditions to understand effect of surface thin layers on the wear and friction characteristics. The slider was made of a diamond sphere 3 mm in radius. As a result, a minimum of the coefficient of friction 0·007 was observed over a film thickness range of 1·5–10 nm. The sliding planes were observed by Auger electron spectroscopy, reflection high energy electron diffraction (RHEED), synchrotron orbital radiated X-ray diffraction (SOR-XD) and scanning tunnelling microscopy (STM). No worn particles were found after 100 reciprocal sliding cycles, and the very low friction coefficient lasted for at least 1000 sliding cycles. Observations using STM on the sliding surfaces confirmed that the stacking Ag(111) planes slid. The SOR-XD and RHEED verified that a tribo-induced orientation of polycrystal film occurs as Ag(111) sliding planes are oriented parallel to the sliding direction on the track. The friction force of as deposited epitaxial Ag films as a function of the load was constant. On the other hand, in the 5 nm thick Ag films annealed to form complete single crystals, the friction coefficient showed a strong load dependency. At a load of 250 mN or more, the annealed films showed a low and static friction coefficient. These results suggested that the shearing resistance of nanometre thick Ag layers exhibits a strong anisotropic performance within the thickness range of nanometres, along with an orientation of Ag during sliding. Experimental results of sliding tests were discussed on the contribution of surface atoms to the friction, an extraordinarily low wear rate of the Ag layers, and the relationship between the nanoscopic structure and macroscopic tribological performance.  相似文献   

19.
In this study, we propose the use of laser surface texturing methods to improve the wear resistance of diamond-like-carbon (DLC) coatings. First, the application of dimples perpendicular to an engineering surface is introduced by using laser in a controlled manner. The solid DLC lubricant is subsequently deposited on the textured surface using the magnetron sputtering technique. In the experiments, the dimple densities were varied from 0 to 30%, and the dimple diameters were varied from 40 to 300 μm. The effect of the geometric parameters on the wear performance was studied using a reciprocating sliding-wear tester under oil lubrication conditions. The results showed that the DLC coatings with the appropriate dimple density (10%) and diameter (∼100 μm) demonstrated an obvious improvement in terms of the friction coefficient and wear rate compared with that of the un-textured DLC coatings. The experimental treatment produced respective reductions of 20% in friction and nearly 52% reduction of wear rate. This improvement could be explained by the action of reservoirs that enhance lubricant retention and trap the wear particles during sliding motions. In addition, the relationship between the dimple diameter, the contact width ratio and the wear performance is discussed.  相似文献   

20.
为了评估全视场在线图像可视铁谱磨粒显微成像特性,提出了一种反射光显微成像模型。首先,基于朗伯余弦与小角度散射理论建立了全视场(OLVF)的反射光辐照度模型,实现了磨粒显微成像清晰度定量评价。然后,仿真计算磨粒显微成像的反差透视比,确定了最优光学倍率和适用于全视场OLVF探测的油液衰减系数范围,明确了光学参数对磨粒显微成像质量的影响规律。结果显示:光学倍率为2.0×且油液衰减系数≤2.0条件下,磨粒沉积于物方视场的主光轴附近,全视场OLVF可获得最佳磨粒显微成像清晰度。最后,开展了磨粒显微成像实验测试,结果表明:全视场OLVF能够从油液衰减系数小于2.0的在用液压油和齿轮油中获取反射光谱片图像,并提取磨粒视觉信息进行磨损在线监测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号