首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 124 毫秒
1.
A study was made of photoperiodic induction of the facultative pupal diapause in the tobacco hornworm, Manduca sexta, reared on artificial diet in the laboratory. The species entered a prolonged diapause when the egg and larval feeding stages were reared in daily photoperiods of 13·5 hr or less. Diapause was induced in all insects at photoperiods ranging from 1 to 13 hr, and part of the population entered diapause at only 15 to 30 min of light per day. Photoperiods of 14 hr or more and continous darkness prevented diapause. Duration of diapause varied with the inductive photoperiod in which the hornworms were reared during the sensitive period. Insects reared in longer diapause-inducing photoperiods within a range of 12 to 13·25 hr remained in diapause longer than those reared in shorter photoperiods. There was no difference in the rate of larval development of hornworms reared in diapause-inducing vs diapause-preventing photoperiods. Temperatures of 26 to 30°C were most favourable for the photoperiodic induction of diapause; at 21°C, the critical photoperiod and incidence of diapause were decreased. Diapause induction was suppressed by low (18°C) and higher (33°C) temperatures. The number of inductive 12L:12D (light = 12 hr; dark = 12 hr) cycles required to induce diapause ranged from as few as 5 for some insects to as many as 12 for others when the post-inductive régimen was continuous light, but with insects previously held in continuous dark, as few as 2 12L:12D cycles during the last 2 days of larval feeding induced diapause in 38 per cent of the population. Only 3 to 4 cycles of 15L:9D during the final larval instar reversed inductive effects of 14 to 15 12L:12D cycles. Photoperiodic sensitivity extended from the late embryo to the end of larval feeding but showed considerable fluctuation during development with maximum sensitivity occurring just before egg hatch and during larval growth.Light breaks applied at different times during the dark period of 12L:12D cycles generated different response curves, depending on the number of cycles in which light breaks were repeated. When repeated for 6 cycles, a unimodal response curve was obtained; 10 cycles produced a bimodal curve and light breaks given for 18 cycles throughout the sensitive period averted diapause regardless of time of night applied. It is suggested that diapause is regulated by a photo- and thermolabile substance that accumulates during long nights (11 hr or more) and acts during the early pupal stage to inhibit the translocation and release of development-promoting neurosecretion from the brain.  相似文献   

2.
A photoperiodically-controlled diapause of the long-day, short-day type was identified in a brown-winged, yellow-eyed strain of Ephestia cautella (Walker). The proportion of larvae diapausing in very long photoperiods was less than in short photoperiods. The mean critical photoperiod, here defined as that photoperiod giving half the maximum percentage of insects that diapause in response to photoperiod at a given temperature, was between 12 and 13 hr for the long-day reaction at both 20 and 25°C. The principal sensitive phase occurred near the time of the last larval moult. The mean duration of diapause was 2–3 months at 20°C and slightly longer at 25°C. The optimum temperature for diapause development was near 15°C, all larvae pupating within 24 days after a 45-day exposure at this temperature. Diapause could be terminated whenever larvae diapausing at 20°C were exposed to as few as five long (15 hr) photoperiods at 25°C. Long photoperiods at 20°C, or short photoperiods (9 hr) at 25°C were less effective in terminating diapause.  相似文献   

3.
Many insects in temperate zones withstand the adverse conditions of winter through entering diapause and the two most important environmental stimuli that induce diapause are photoperiod and ambient temperature. The Large Copper butterfly, Lycaena dispar Haworth (Lepidoptera: Lycaenidae), is a Palearctic butterfly that hibernates as larvae. Since this butterfly is a near threatened species in some regions, there has been a growing need for a standardized protocol for mass rearing of this butterfly based on the adequate knowledge of its ecology. In the present study, we first identified that L. dispar larvae were sensitive to the photoperiodic induction of diapause during their first larval instar. We then investigated to what extent the diapause-inducing effects of photoperiod could be modified by ambient temperatures in L. dispar larvae by exposing them to the range of day-lengths (L:D 14:10, 12:12, 10:14 and 8:16) at three different temperatures (15, 20 and 25 °C). All larvae were induced to enter diapause at low ambient temperature (15 °C) regardless of photoperiod, whereas most of them (86 %) exhibited direct development when temperature was high (25 °C). The photoperiodic induction of diapause was evident when day-length was shorter than 14 h at intermediate temperature (20 °C). Pre-diapause development was prolonged at low temperatures. Finally, we found that post-diapause development of L. dispar larvae was determined by both the chilling temperature experienced by diapausing larvae and the duration of larval diapause. Adult emergence was enhanced when larvae were chilled at 8 °C and when they had been under the state of diapause for 20 days before they were treated to terminate diapause.  相似文献   

4.
The yellow peach moth, Conogethes punctiferalis (Guenée), a multivoltine species that overwinters as diapausing larvae, is one of the most serious insect pests on maize in China. Effect of photoperiod and temperature on larval diapause was examined under empirical laboratory conditions. Short‐day treatments caused larval diapause at 25°C, and the critical photoperiod was between 12 and 13 h (or 12 h 51 min) light per day. No sensitive instar was identified for diapause induction under alternated short‐ (L : D 11 : 13 h) and long‐day (L : D 14 : 10 h) treatments at different larval stages. However, accumulative treatment of three instars and 10 d under short‐day treatment was required for the induction of 50% larval diapause. All larvae entered diapause at 20°C, whereas less than 3% did so at 30°C, irrespective of the long‐ or short‐day treatment. Furthermore, under the short‐day treatment, more than 90% of larvae went into diapause with temperatures ≤ 25°C, but less than 17% did so at 28°C. In contrast, under the long‐day treatment, less than 19% of larvae went into diapause with temperatures ≥ 23°C. The forward shift (5°C) of critical temperature under the long‐day regime demonstrated the compensatory effect of temperature and photoperiod on diapause induction. In conclusion, C. punctiferalis had a temperature‐dependent type I photoperiodic diapause response; there was no sensitive instar for diapause determination, but the photoperiodic accumulation time countermeasures both of the short‐day cycles and the number of instars exposed, and the photoperiodic diapause response, was a temperature‐compensated phenomenon.  相似文献   

5.
D. Blumberg 《BioControl》1976,21(2):131-139
During autumn and winter (October–February)Cybocephalus nigriceps nigriceps (J. Sahlberg) adults undergo a facultative diapause. The diapausing adults agregate in hiding places, development of the ovaries is arrested, and prey consumption is lowered. Diapause can be prevented by exposure to a long-day photoperiod (16 hr light) at high temperatures (29° and 32°C). Diapause is induced mainly by short-day conditions, but the termination of diapause is affected by both photoperiod (long-day conditions) and temperature (29°, 32° and 34°C). In mature females, diapause induction causes ovarian degeneration. The induction or inhibition of adult diapause is affected by photoperiods occurring during larval development as well as during adult life.  相似文献   

6.
The effect of various combinations of photoperiod and temperature on the induction and termination of the mature larval diapause of a Missouri strain of the southwestern corn borer. Diatraea grandiosella, was examined. Larval exposure to regimes in which the low phase of a 30°:23°C thermoperiod coincided with a scotophase of 10 to 14 hr duration led to high incidence of diapause. Larval exposure to 30°:24°C, 33°:21°C, and 36°:18°C thermoperiods with half cycles of 12 hr in continuous darkness yielded a diapause incidence of 16%, 22%, and 59%, respectively, whereas exposure to a 30°:24°C thermoperiod in continuous illumination yielded a completely nondiapause generation. Larval exposure to one of a series of 36°:18°C thermoperiods in which the duration of the high phase was increased in 2 hr increments from 0 to 24 hr in continuous darkness showed that “short-day” thermoperiods yielded a high incidence of diapause. However, no clearly defined critical thermoperiod was observed. An examination of photoperiodic and thermoperiodic effects on diapause development showed that, in general, those combinations of temperature and light cycles which were diapause inductive also retarded diapause development. The relationship between seasonal photoperiods and thermoperiods in southeastern Missouri was examined.  相似文献   

7.
The role of photoperiod and temperature in the induction of overwintering diapause inPhyllonorycter blancardella (F.) (Lepidoptera: Gracillariidae) was examined in the laboratory and field using leafminers from commercial apple orchards in Ontario, Canada.P. blancardella exhibited a long-day response to photoperiod: long daylengths resulted in uninterrupted development whereas short daylengths induced diapause. The estimated critical photoperiod for diapause induction was L14.25∶D9.75. The larvae of leafminers destined to enter diapause took ca. 3× longer to complete development than the larvae of non-diapausing leafminers. The development prolonging effect of photoperiod decreased with decreasing daylength. Temperature modified the diapause inducing effect of photoperiod. At L14.25∶D9.75, diapause incidence was similar at 15 and 20°C but was lower at 25°C. Photoperiod also altered the normal relationship between development rate and temperature. At L14.25∶D9.75, the duration of larval development of diapausing leafminers was similar at 15, 20 and 25°C. Temperature alone is unlikely to have a role in the induction of diapause because leafminers exposed to natural late summer and fall temperature regimes and L16∶D8 did not enter diapause.  相似文献   

8.
The effect of daylength and temperature on the regulation of the larval diapause of a central Missouri population of the sunflower moth, Homoeosoma electellum, was examined. Fully grown fourth-instar larvae exhibit a facultative diapause. Measurements of the effect of photoperiod on diapause induction revealed critical photoperiods of about 13 h 30 min light/day at 20°C, and between 11 h 45 min and 12 h light/day at 23°C. Third and fourth-instar larvae were shown to be the main sensitive stages for diapause determination. Daylength was also shown to be an important regulator of the rate of diapause development. A short day of LD 10:14 h permitted only a low rate of diapause development, whereas long days of LD 14:10 h and LD 16:8 h accelerated diapause development at 25 and 30°C. When long days were alternated with short days at 30°C the accelerating effect of long days on diapause development was not found. Systematic transfers of chilled diapausing larvae revealed an accelerated diapause development in groups transferred from 10 to 30°C LD 10:14 h, but diapause development was not accelerated in groups transferred from 10 to 30°C LD 16:8 h.  相似文献   

9.
Induction of diapause in the larval stage of the oblique-banded leafroller, Choristoneura rosaceana (Harris), was found to be dependent on both photoperiod and temperature. At constant temperatures of 24, 20 and 16°C, short photoperiods induced diapause. The critical photoperiod was between 14–15 h of light per day at 20 and 16°C. At 14 h light: 10 h dark, all larvae expressed diapause. Temperature had a modifying effect, and slightly shifted the larval response to diapause-inducing photoperiods. High constant temperatures of 28°C and above induced diapause in some individuals (< 20%), while fluctuating temperatures of 32 and 16°C in a 12-h cycle resulted in 67% diapause induction, suggesting that diapause could also be induced by fluctuating temperatures, particularly if the higher temperature exceeds 25°C.The first- and the second-instar larvae were the only two stages sensitive to diapause induction. Exposure of adult, egg and third, fourth, and fifth-larval instars to diapause-inducing conditions did not produce diapause. Although diapause was induced in the first or the second instars, it was always expressed in the third or fourth instar.  相似文献   

10.
The predatory bugPodisus maculiventris Say displays a reproductive diapause. In the laboratory, at 23±1°C, when the pre-imaginal stages were reared on larvae ofGalleria melonella L. (Lepidoptera: Pyralidae) under a short photoperiod of 8L: 16D, diapause was induced in all adult females, whereas under a long photoperiod of 16L: 8D none entered diapause. Nymphal development was faster under the diapause-inducing short photoperiod than under the diapause-averting long photo-period. By contrast, embryonic development was faster under the long than under the short photoperiod. Diapause maintenance was also under the control of photoperiod. After a 10-d-period of chilling at 4°C, diapause was quickly terminated in adults kept under long photoperiod whereas it was maintained in most of those kept under short photoperiod. The predation rate of non-diapause or post-diapause adult females was much higher than that of diapause females.  相似文献   

11.
Abstract Sericinus montelus overwinters as diapausing pupae. In the present study, the effects of photoperiod and temperature on diapause induction and termination of diapause are investigated. The results obtained demonstrate that high temperature can reverse the effect of short day‐lengths on diapause induction. Under an LD 12 : 12 h photoperiod, all pupae enter diapause at 15, 20 and 25 °C, whereas all pupae develop without diapause at 35 °C. No pupae enter diapause under an LD 14 : 10 h photoperiod when the temperature is above 20 °C. Photoperiodic response curves obtained at 25 and 30 °C indicate that S. montelus is a long‐day species and the critical day‐length is approximately 13 h at 25 °C. At 25 °C, the duration of diapause is shortest when the diapausing pupae are maintained under an LD 16 : 8 h photoperiod and increases under LD 14 : 10 h and LD 12 : 12 h photoperiods. Under an LD 16 : 8 h photoperiod, the duration of diapause is shortest when the diapausing pupae are maintained at 25 °C, followed by 20 and 30 °C, and then at 15 °C. These results suggest that a moderate temperature favours diapause development under a diapause‐averting photoperiod in this species. The duration of diapause induced by an LD 12 : 12 h photoperiod is significantly longer at 25 °C than those at 15, 20 and 30 °C, and is shortest at 15 °C. At 25 °C, the duration of diapause induced by LD 6 : 18, LD 12 : 12 and LD 13 : 11 h photoperiods is similar and longer than 90 days. Thus, the diapause‐inducing conditions may affect diapause intensity and a photoperiod close to the critical day‐length has significant influence on diapause intensity in S. montelus.  相似文献   

12.
To determine the larval diapause and the effect of photoperiod on development in Monochamus urussovi (Coleoptera: Cerambycidae), larvae were reared on Abies sachalinensis and Picea jezoensis logs and bolts. Larvae stopped developing in the final instar at 25°C and 16L : 8D (16 h light and 8 h dark) whereas an exposure to 5°C in the dark (134 days) following acclimation at 12°C under natural daylength led to adult emergence. When larvae were reared under 8L : 16D or 16L : 8D at 25°C with an intervening period of chilling at 5°C in the dark (112 days), a photoperiod of 8L : 16D induced a shorter time required for adult emergence after being returned to 25°C, and smaller adult body size than 16L : 8D.  相似文献   

13.
To investigate the physiology of Chrysopa pallens, the effect of photoperiod on diapause and development was examined in a Japanese population (33.4°N). The response stage for diapause of C. pallens was considered to be the prepupal stage. The critical photoperiod for diapause induction at 20.0°C was between 13 h light : 11 h dark (LD 13:11) and LD 14:10. The larval developmental period was affected by photoperiod: larvae in diapause took longer to complete their development. This difference of larval developmental period in relation to photoperiod was considered to be an adjustment of larval diapause timing.  相似文献   

14.
A wild bean weevil,Kytorhinus sharpianus Bridwell (Coleoptera: Bruchidae), has a multivoltine life cycle and enters a hibernal larval diapause at the fourth instar under a short daylength (Shimada & Ishihara, 1991). Here, we investigated their diapause incidence under different photoperiods at 24°C and 27°C. The critical photoperiods for diapause induction were 14.5 h at 24°C and 14 h at 27°C. The stages susceptible to diapause-inducing stimuli were estimated by transferring larvae of various instars from long days to short days and vice versa. Then we investigated the incidence of larval diapause. The sensitive stage was estimated to be from the third to early fourth instar. Though larval diapause, which was induced under a short daylength, was terminated only by increasing the daylength, the termination was more synchronized by an exposure to a low temperature followed by increasing temperature, irrespective of photoperiod.  相似文献   

15.
Diapausing larvae of Ephestia elutella reared at 20°C in short photoperiods (LD 11:13), and then maintained 12 weeks or longer at 5–15°C before transfer to 20 or 25°C, pupated sooner than unchilled controls. At 25°C, all samples kept in long photoperiods (LD 15:9) survived better and pupated faster than similarly treated samples held in short photoperiods (LD 9:15). Samples kept at 20°C after chilling pupated much slower than those at 25°C, and, except after exposure at 5°C, pupated at similar rates at LD 11:13 or 15:9, although mortality was higher at the shorter photoperiod. After exposure at 5°C, larvae required increased day-length as well as increased temperature to hasten pupation whereas after exposure at 10°C most responded to increased temperature only.For samples maintained in slightly heated or unheated outbuildings, the summer emergence was poorly synchronized and males on average emerged ahead of females. Samples moved from the unheated outbuilding to 25°C and long days in the laboratory in early spring, however, pupated quickly and males and females emerged together. A late phase of diapause development thus exists requiring both high temperature and long photoperiods to ensure a prompt resumption of morphogenesis. Spring temperatures in the United Kingdom are seldom high enough to synchronize the completion of diapause.  相似文献   

16.
Larvae of wild type (WT) strain of Chymomyza costata Zetterstedt (Diptera: Drosophilidae) enter diapause (stop developing) in response to short‐day signal at a constant 18 °C, whereas larvae of a non‐photoperiodic‐diapause (NPD) strain do not respond to photoperiodic signalling and continue in larval development irrespective of daylength. The present study shows that WT larvae also respond reliably to thermoperiodic signalling (daily cycles of temperature) under constant darkness, whereas the NPD larvae do not, suggesting that the pathways transducing the environmental token stimuli (photoperiod and thermoperiod) onto the diapause developmental programme might merge functionally in the central biological clock system known to be mutated in NPD strain. Temperature and larval population density modify the output of token stimuli signalling. High temperatures (>24 °C) tend to avert, whereas low temperatures (<18 °C), especially in combination with constant darkness, stimulate diapause induction in WT strain. Overcrowding (>200 larvae per 5 g of larval diet) lengthens the duration of larval development and induces a ‘diapause‐like’ developmental arrest of relatively weak intensity in up to 60% of larvae of both strains. At high temperatures (>30 °C), all WT larvae continue direct development but subsequently die during the pupal stage. Low temperature exposure (<12 °C) causes quiescence in the majority of the larvae of both strains. Starvation blocks development and causes mortality when applied in larvae younger than day 3 of the third instar. Older larvae survive starvation and their photoperiodically‐induced developmental pre‐programming is not affected. Collectively, the results show that diapause induction in C. costata is a result of various interacting effects of multiple environmental factors.  相似文献   

17.
Abstract. Effects of temperature and photoperiod on the induction and re-induction of adult diapause were examined in Dybowskyia reticulata (Dallas) (Heteroptera: Pentatomidae). Adults collected from the field after overwintering in early summer continued oviposition under long-day conditions of LD 16:8 h at 20 or 25°C, while they re-entered diapause under short-day conditions of LD 12:12 h at 25, 27.5 or 30°C. By contrast, adults reared in the laboratory from eggs at 20 or 25°C entered diapause under both long-day and short-day conditions, whereas those reared at 27.5 and 30°C entered diapause only under short-day conditions. Under quasi-natural conditions in 1993, when summer temperature was low, most adults of the first generation entered diapause in late July. However, in the warmer summer of 1996, oviposition was recorded in many females that ecdysed into adults from July to early August. Even though the seeds of the host plants occur in a restricted period from early summer to early autumn, in warmer years D. reticulata may produce a second generation. The response to temperature with a threshold between 25 and 27.5°C in D. reticulata brings about a switch between the univoltine and bivoltine life cycles.  相似文献   

18.
Stages of Metaseiulus occidentalis sensitive to photoperiod induction of diapause were determined by transferring various stadia into diapause-inducing conditions, and rearing them until adult females could be scored for reproductive condition. When eggs were transferred to 10 hr light at 19°C from 24 hr light at 25°C and the mites reared to adults, 92 per cent entered diapause. When larvae and all subsequent stages were kept under the inductive conditions, 62 per cent of adult females diapaused. Mites transferred as protonymphs into inductive conditions yielded only 10 per cent in diapause, and mites transferred as deutonymphs or newly emerged females did not enter diapause.However, adult females reared from eggs at 19°C under 12 hr light (which is near the critical photophase of 11·2 hr at 19°C) showed an unexpected sensitivity to photoperiod. Some newly emerged females oviposited upon transfer to an 8 hr photophase at 19°C. Some then stopped ovipositing and apparently entered diapause; these females resumed ovipositing after intervals ranging from 34 to 100 days. This was termed ‘switching’ into diapause. Some females reared under a 16 hr photophase at 19°C ‘switched’ also upon transfer as adults to shorter photophases—either 8 or 12 hr at 19°C. Thus, ‘switching’ may be due to transfer to shorter photophases. Promptness of mating vs delayed mating allowed ‘switching’ to be more easily detected.  相似文献   

19.
J. Claret 《BioControl》1978,23(4):411-415
Résumé La diapause larvaire facultative de l'ichneumonidePimpla instigator F. est sous la dépendance de la photopériode et de la température. Les courbes de la réponse photopériodique sont établies pour plusieurs températures. Les basses températures augmentent le pourcentage de larves en diapause, tandis que les hautes tendent à annuler l'effet des photopériodes inductrices de la diapause. A 30°C aucun animal ne diapause, quelle que soit la photopériode. Les larves males entrent plus facilement en diapause que les larves femelles.
Summary Larval diapause ofPimpla instigator is dependent on photoperiod and temperature. The photoperiodic induction response curves are compared at different levels of constant temperature. Low temperatures enhance the diapause-inducing effect of photoperiods, whereas high temperatures reduce it. The larval diapause was not induced at any photoperiod when the insects were reared at 30°C.
  相似文献   

20.
Regulation of growth and development by photoperiod was studied in a population of the speckled wood butterfly, Purarge aegeria L. (Lepidoptera: Satyrinae), from southern Sweden. Individuals were reared in a range of photoperiodic regimes (9L. to 22L) and temperatures (13°C to 21° C). Plasticity was found for important life-history traits- generation time, growth rate and final weight and seasonal regulation of development in response to photoperiod was found to occur at two levels. Purarge aegeria hibernates as a third instar larva or in the pupal stage, cantering one of four major developmental pathways in response to photoperiod: (1) direct development in both the larval and pupal stages, (2) pupal winter diapause with or (3) without a preceding larval summer diapause, or (4) larval winter diapause. In addition to this high-level regulation of individual development, larval growth rate and pupal development rate also appear to be finally regulated by photoperiod within each major pathway. As photoperiods decreased from 22 h to 17 h at 17° C, growth rate among directly developing larvae increased progressively, as was the case for larva? developing according to a univoltine life cycle from 17 h to 14 h. At two photoperiods, 13 h and 16 h (corresponding to shifts between major pathways), both larval and pupal development were extremely variable with the fastest individuals developing directly and the slowest developing with a diapause. This indicates a gradual nature of diapause itself, suggesting that the two level may not he fundamentally different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号