首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The effects of multiple industrial-pollutant sources on the groundwater system were evaluated in the Industrial Development Areas (IDAs) of Medak district, Andhra Pradesh (AP), India. The quality of groundwater in the region has been affected negatively due to the discharge of effluents on open land and into ponds, tanks, and streams. Water samples from surface-water bodies, dug wells,and bore wells were analyzed for their major ion concentrations. The high values of electrical conductivity (EC) and concentrations of Na+, Ca2+, Cl, and HCO3 indicate the impact of industrial effluents. Based on the hydrochemistry, the groundwater is classified into various types, such as sodium-chloride, sodium-bicarbonate, calcium-chloride, and magnesium-chloride, and its suitability for drinking and irrigation has been assessed. The present studies made it possible to demarcate areas of contaminated groundwater and those prone to contamination in the near future. Water in the area has deteriorated all along Nakka Vagu up to a maximum distance of 500–700 m from the eastern bank. The groundwater quality in and around Patancheru (to a depth of 30 m) has become hazardous. Some possible remedial measures are suggested. Electronic Publication  相似文献   

2.
An isotopic and chemical study was conducted on precipitation, spring water, streams, groundwater wells and submarine groundwater discharge (SGD) to constrain the recharge areas and flow paths of SGD. The isotopic values of precipitation were used to determine the local meteoric water lines (LMWLs) of Rishiri Island. The d-excess values of precipitation showed seasonal variation, with lows of 2.5‰ in the summer and highs of 24.2‰ in the winter. The d-excess values of spring water, streams, groundwater wells and SGD ranged from 12.5‰ to 23.0‰, indicating that the resulting waters were a mix of two seasons of precipitation. The isotopic composition of the groundwater wells sampled along the coast and SGD showed more negative values than that of the spring water sampled along the coast. This indicated that SGD recharged at high altitudes and flowed into the sea. The isotopic and chemical composition of SGD indicated unidirectional flow from land to sea.  相似文献   

3.
A comparison of the d-excess values of precipitation and of spring water, streams, groundwater wells and submarine groundwater discharge indicated that the precipitation that occurred during winter season was an important source of groundwater recharge. Due to the steep slope of the island, most of the short duration and high intensity precipitation is lost through direct surface runoff. The comparison indicated that snowmelt is an important resource of groundwater recharge on Rishiri Island. Future climate change will continue to diminish the snowpack, and therefore, reduce groundwater recharge. It may cause the decline of the groundwater level in the coastal area and possibly shift the saline–freshwater boundary on the island. Chloride data indicated that saltwater intrusion is beginning to occur on the western flank of the island. A Piper diagram shows that the water samples are characterized by the dominance of the Ca–HCO3 and Na–Cl type. Their chemistry probably results from sea salt spray and the dissolution of minerals. These results support the need for the effective management of groundwater resources.  相似文献   

4.
《Quaternary Science Reviews》2007,26(7-8):1067-1090
OverallThis work is presented in two parts. Part I presents observations on the coupling between subglacial channel flow and groundwater flow in determining subglacial hydraulic regime and creating eskers from an Icelandic glacier that is suggested as an analogue for many parts of Pleistocene ice sheets. Part II develops a theory of perennial subglacial stream flow and the origin of esker systems, and models the evolution of the subglacial stream system and associated groundwater flow in a glacier of the type described in Part I. It is suggested that groundwater flow may be the predominant mechanism whereby meltwater at the glacier bed finds its way to the major subglacial streams that discharge water to glacier margins.Part IBoreholes drilled through an Icelandic glacier into an underlying till and aquifer system have been used to measure variations in head in the vicinity of a perennial subglacial stream tunnel during late summer and early winter. They reveal a subglacial groundwater catchment that is drained by a subglacial stream along its axis. The stream tunnel is characterised by low water pressures, and acts as a drain for the groundwater catchment, so that groundwater flow is predominantly transverse to ice flow, towards the channel.These perennial streams flow both in summer and winter. Their portals have lain along the same axes for the 5 km of retreat that has occurred since the end of the Little Ice Age, 100 years ago, suggesting that the groundwater catchments have been relatively stable for at least this period. In the winter season, stream discharges are largely derived from basal melting, but during summer, water derived from the glacier surface finds its way, via fractures and moulins, to the glacier bed, where it dominates the meltwater flux. Additional subglacial streams are created in summer to help drain this greater flux from beneath the glacier, through poorly integrated and unstable networks. Summer streams cease to flow during winter and tend not to form in the same places in the following summer. Perennial streams are the stable component of the system and are the main sources of extensive esker systems.Strong flow of groundwater towards low-pressure areas along channels and the ice margin is a source of major upwelling that can produce sediment liquefaction and instability. A theory is developed to show how this could have a major effect on subglacial sedimentary processes.  相似文献   

5.
The assessment of groundwater quality and its environmental implications in the region of the abandoned Cunha Baixa uranium mine (Central Portugal) was carried out from 1995 to 2004. Shallow groundwater is the major water supply source for irrigation in the neighbourhood of Cunha Baixa village. Water samples from the mine site as well as from private wells were collected in order to identify the mining impact on water composition, the extent of contamination and the seasonal and temporal groundwater quality variations. Some of the sampled private wells contain waters having low pH (<4.5–5) and high values of EC, TDS, SO4, F, Ca, Mg, Al, Mn, Ni, U, Zn and 226Ra. The wells located through the ESE–WSE groundwater flow path (1 km down gradient of the mining site) display the most contaminated water. In the summer season, the levels of SO4, Al, Mn, and U were 50–120 times higher than those registered for uncontaminated waters and exceeded the quality limits for irrigation purposes, presenting soil degradation risks. Nevertheless, this study indicates that groundwater contamination suffered a small decrease from 1999 to 2004. The bioaccumulation of toxic metals such as Al, Mn, and U within the food chain may cause a serious health hazard to the Cunha Baixa village inhabitants.  相似文献   

6.
The Kingston Basin in Jamaica is an important hydrologic basin in terms of both domestic and industrial sector. The Kingston hydrologic basin covers an area of approximately 258 km2 of which 111 km2 underlain by an alluvium aquifer, 34 km2 by a limestone aquifer and the remainder underlain by low permeability rocks with insignificant groundwater resources. Rapid development in recent years has led to an increased demand for water, which is increasingly being fulfilled by groundwater abstraction. A detailed knowledge of the water quality can enhance understanding of the hydrochemical system, promoting sustainable development and effective management of groundwater resources. To achieve this, a hydrochemical investigation was carried out in the Kingston Basin. Results showed that the water is Na–Ca–Cl–HCO3 and Na–Ca–HCO3 type with higher concentrations of nitrate, sodium and chloride as the leading causes of contamination in most of the wells. High concentrations of nitrate correlate with wells from areas of high population density and could be attributed to anthropogenic causes, mainly involving improper sewage treatment methodologies or leaking sewer lines. Jamaica, owing to its island nature, has the continuous problem of saline water intrusion, and this is reflected in the higher levels of chloride, sodium and conductivity in the water samples collected from the wells. The wells studied show higher concentrations of chloride ranging from around 10.2 mg/l in wells located approximately (4931.45 m) from the coast to around 234 mg/l in the well located near to the coast. The conductivity values also closely correlate with the chloride levels found in the wells.  相似文献   

7.
Stable isotope data and concentrations of the major cations and anions of groundwater from the northern part of the Volta Region, Ghana, were used to determine the source of recharge and the suitability of groundwater in the area for irrigation. This study finds that the delta deuterium (δD) and delta Oxygen-18 (δ18O) data from the area fall along the global meteoric water line (GMWL). An equation of regression derived for the relationship between δD and δ18O bears very close semblance to the equation which describes the GMWL. On the basis of this, groundwater in the study area is probably meteoric and fresh. The apparently low salinities and sodicities of the groundwater seem to support this interpretation. The suitability of groundwater for domestic and irrigation purposes is related to its source, which determines its constitution. A plot of the sodium adsorption ratio (SAR) and electrical conductivity (EC) data on a semilog axis, suggests that groundwater serves good irrigation quality in the area. Sixty percent (60%), 20% and 20% of the 67 data points used in this study fall within the medium salinity–low sodicity (C2–S1), low salinity–low sodicity (C1–S1) and high salinity–low sodicity (C3–S1) fields, which ascribe good irrigation quality to groundwater from this area. Salinities range from 28.1 to 1,956 μS/cm, whilst SAR values fall within the range 0–3. Extremely low sodicity waters of this kind, with salinities lower than 600 μS/cm, have the tendency to affect the dispersive properties of irrigation soils when used for irrigation. About 50% of the groundwater in the study area fall within this category and need prior treatment before usage.  相似文献   

8.
In order to assess the extent of groundwater contamination by nitrate (NO3 –N) and to provide information about the deterioration of the groundwater quality in Zhangye Oasis, Northwest China, a study was conducted in this area. The mean value of NO3 –N concentrations in groundwater samples was 10.66 ± 0.19 mg l−1. NO3 –N concentrations exceeding 10 mg l−1 (the threshold for drinking water set by the World Health Organization) were found in 32.4% of 71 wells, and were 13, 33.3, 52.4 and 50.0% in the groundwater samples from drinking wells, irrigation wells, hand-pumping wells and groundwater table observation wells, respectively. The result showed that the groundwater samples that had NO3 –N concentrations exceeding the threshold for drinking water were mostly collected from a depth of less than 20 m. Groundwater NO3 –N concentrations in areas used for the cultivation of vegetables, seed maize and intercropped maize were significantly higher than those in urban or paddy areas. NO3 –N contamination of groundwater in areas with sandy soil was more severe than in those with loam soil.  相似文献   

9.
 Nakka vagu, a tributary of the River Manjira in the Medak district of Andhra Pradesh, has a catchment area of ∼500 km2. Patancheru is an industrial development area (IDA) near the vagu. There are about 350 industries of varied nature (pulp, plastic, bulk drugs, pharmaceuticals, paints and steel rolling mills) that are engaged in the manufacture/processing of their respective products and that use water extensively. The hydrogeological setup has a bearing on the widespread contamination in the area because of discharge of industrial effluents into open land and streams. Several dug wells and boreholes situated in the study area have been monitored for water level fluctuations and quality variations. Pumping tests have been conducted to evaluate aquifer parameters. The geology, drainage, chemistry and other related anthropogenic factors play a major role in the spread of pollution in the area. Hence, it is very important to determine the degree of vulnerability to pollution based on hydrogeological factors. Amidst the granite terrain, the Nakka vagu has been identified as a paleo-channel (composed of clay–silt–sand facies); its presence in the area has immensely increased the spread of groundwater contamination. The transmissivity of the alluvial aquifer varies from 750 to 1315 m2/day. The adjoining granite has a transmissivity that varies from 30–430 m2/day. The thickness of the valley fill in the discharge region is about 10–12 m, with a lateral spread of 500–700 m, east of Nakka vagu. Received: 17 November 1999 · Accepted: 14 March 2000  相似文献   

10.
The sea level rise has its own-bearing on the coastal recession and hydro-environmental degradation of the River Nile Delta. Attempts are made here to use remote sensing to detect the coastal recession in some selected parts and delineating the chemistry of groundwater aquifers and surface water, which lie along south-mid-northern and coastal zone of the Nile Delta. Eight water samples from groundwater monitoring wells and 13 water samples from surface water were collected and analyzed for various hydrochemical parameters. The groundwater samples are classified into five hydrochemical facies on Hill-Piper trilinear diagram based on the dominance of different cations and anions: facies 1: Ca–Mg–Na–HCO3–Cl–SO4 type I; facies 2: Na–Cl–HCO3 type II; facies 3: Na–Ca–Mg–Cl type III, facies 4: Ca–Na–Mg–Cl–HCO3 type IV and facies 5: Na–Mg–Cl type V. The hydrochemical facies showed that the majority of samples were enriched in sodium, bicarbonate and chloride types and, which reflected that the sea water and tidal channel play a major role in controlling the groundwater chemical composition in the Quaternary shallow aquifers, with a severe degradation going north of Nile Delta. Also, the relationship between the dissolved chloride (Cl, mmol/l), as a variable, and other major ion combinations (in mmol/l) were considered as another criterion for chemical classification system. The low and medium chloride groundwater occurs in southern and mid Nile Delta (Classes A and B), whereas the high and very high chloride (classes D and C) almost covers the northern parts of the Nile Delta indicating the severe effect of sea water intrusion. Other facets of hydro-environmental degradation are reflected through monitoring the soil degradation process within the last two decades in the northern part of Nile Delta. Land degradation was assessed by adopting new approach through the integration of GLASOD/FAO approach and Remote Sensing/GIS techniques. The main types of human induced soil degradation observed in the studied area are salinity, alkalinity (sodicity), compaction and water logging. On the other hand, water erosion because of sea rise is assessed. Multi-dates satellite data from Landsat TM and ETM+ images dated 1983 and 2003 were used to detect the changes of shoreline during the last two decades. The obtained results showed that, the eroded areas were determined as 568.20 acre; meanwhile the accreted areas were detected as 494.61 acre during the 20-year period.  相似文献   

11.
Arsenic is present in groundwater at Siliguri–Jalpaiguri area, West Bengal, India. This is the place where Tista river descending from the Himalayas meets the alluvial plain. The area represents alluvial fan and floodplains of Tista, Mahananda-Balasan, Jaladhaka and its tributaries. In the river sediment samples, para- and ferro-magnetic minerals within 0.3–0.05 mm fraction contain 9–80 ppm of arsenic. The study indicates that iron bearing minerals viz. biotite, hornblende as well as iron coated grains of the sediment are major contributors towards arsenic budget. Though magnetite as a mineral shows maximum arsenic content (22 ppm), it is volumetrically not of much significance. Measurement of groundwater collected from tube wells shows up to 0.05 ppm of arsenic. These arsenic contaminated tube wells occur in a linear fashion along the course of the rivers. Moreover, localization of contaminated tube wells coincides with the change of channel gradient as observed in longitudinal section. The study enumerates a cause–effect relationship of arsenic occurrence with river gradient and fluvial sedimentation.  相似文献   

12.
Investigation of groundwater level fluctuations in the north of Iran   总被引:3,自引:1,他引:2  
Groundwater is the main source of water supply for drinking and agriculture uses in Mazandaran province. In recent years, the rapid growth of population and the increased need for water and food has put its land and water resources under severe stress. The main objective of this study was to investigate the temporal trends in annual, seasonal and monthly groundwater level using the Mann–Kendall test and the Sen’s slope estimator in the area during 1985–2007. The results indicated a mix of negative and positive trends in the groundwater level series. However, the positive trends were much more than negative ones. The statistical tests detected a significant increasing trend in more than 28% of the wells. The stronger increasing trends were identified in the series in summer and spring compared with those in autumn and winter. Moreover, the highest numbers of wells with significant positive trends occurred in August and July, respectively. The results of spatial analysis showed that the significant positive trends were concentrated in the central parts of Mazandaran province where paddy fields are the major water demanders. Analysis of climatic parameters revealed that decreasing trend of relative humidity and increasing trends of minimum and maximum air temperature can be attributed to groundwater level fluctuations in the study region. The research will be helpful for planners and policy makers to allocate groundwater resources in different sectors including agriculture, drinking and industry.  相似文献   

13.
The chemical analysis of 59 water wells in Meshkinshar area, Ardabil province NW of IRAN has been evaluated to determine the hydrogeochemical processes and ion concentration background in the region. The dominated hydrochemical types are Na–SO4, Ca–HCO3, Na–HCO3 and Na–Cl in the whole area. Based on the total hardness, the groundwater is soft. According to electrical conductivity and sodium adsorption ratio, the most dominant classes are C1–S1, C2–S1 and C3–S1. The major ion concentrations are below the acceptable level for drinking water. The groundwater salinity hazard is medium to high but the Na hazard is low to medium and in regard of irrigation water the quality is low to medium. So the drainage system is necessary to avoid the increase of toxic salt concentrations.  相似文献   

14.
Hydrochemical study had been carried out on the groundwater resources of Potharlanka Island, Krishna delta, India. Groundwater samples were collected and analyzed at 42 sites in December 2001 and October 2006. A comparative study of hydrochemical data indicates: groundwater is mildly alkaline with a pH of 7.0–8.2; electrical conductivity (EC) varies from 605 to 5,770 μS/cm in December 2001, and 652–5,310 μS/cm in October 2006. More than 62% of the groundwater samples in 2006 have TDS value <2,000 mg/l, which is within permissible limit of potable water, but 57% of the samples in 2001, are higher than the maximum permissible limit. Extremely low HCO3/Cl and variable high Mg/Ca (molar ratios) had been indicated the transformation of the fresh groundwater aquifer systems to saline in 2001. Groundwater of this Island is mainly classified as Na–Cl and mixed types. A high percentage of Na–Cl type of these waters indicates the possibility of seawater ingression/intrusion process during 2001 and comparatively mixed water type indicates the dilution activities of groundwater. Excessive withdrawal of groundwater has caused the increase of saline water intrusion. Improvement of groundwater quality in this Island due to artificial recharge structures made by NGRI under RGNDWM project and affects of the flood due to heavy rainfall of the months of September–October 2005 are discussed in this paper.  相似文献   

15.
Pico, the youngest island of the Azores archipelago, is composed of basaltic volcanic deposits less than 300,000 years old. The principal aquifer system consists mainly of recent lava flows that are very permeable and whose head is influenced by tidal fluctuations. Groundwater abstraction is almost entirely by drilled wells. The hydraulic gradient is very low, about 10–4, which agrees with observations made on similar volcanic islands. Groundwater also occurs in perched-water bodies, but the spring discharge from them is very low, about 10–3 L/s. The transmissivity of the volcanic rocks ranges from 9.44×10–3 to 3.05×10–1 m2/s, indicating the heterogeneity of the aquifers. The hydraulic diffusivity, estimated from observations of the effects of tidal fluctuations, also confirms the high permeability of the aquifer system; the average value is higher than published values for other volcanic islands. A mixing process for fresh water and seawater, often coupled with ion-exchange mechanisms, explains the groundwater composition, which is mainly of the sodium-chloride type. The water salinity influences the groundwater quality, resulting in a chloride content that exceeds the recommended chloride limit in 91% of the wells . Water–rock interactions are dominant in the chemical evolution of the perched water, which is characterized by bicarbonate-anion type water. Electronic Publication  相似文献   

16.
Water samples were collected from the Yellow River and from wells for chemical and isotopic measurement in the counties of Yucheng and Qihe, to which 6–9×108 m3 of water is diverted annually from the Yellow River. A zone of high electrical conductivity (EC) in groundwater corresponds well on the regional scale with a ridge in groundwater level, which is the main flow path through the region, but has a low gradient. The zone of highest EC along this ridge occurs at a position with the lowest ground altitude in the study area. The unique characteristic of the groundwater is the linear relationship among the principal anions as the result of mixing. The mixing effect is confirmed by its isotopic signature, which was then used to calculate the contributions from three sources: rainfall, old water, and diverted water with an average mixing rate of 18, 17, and 65%, respectively. As an indicator of water movement, Cl content varies across a wide range in the profile from 30–10 m with a maximum concentration at about 1.2 m depth. Concentrations are relatively stable at about 2 m, which is the average boundary of the saturated and unsaturated zone. The water from the Yellow River has proved to be dominant in mixing in the aquifer in terms of groundwater flow and geochemistry. Electronic Publication  相似文献   

17.
The Blato aquifer is situated on the western side of the island of Korčula, southern Dalmatia, Croatia. The terrain is built of karstified carbonate rocks, mostly of the Cretaceous age. In the Blatsko karst polje there are four water supply wells with a total yield of about 60 l/s. The catchment area is 28 km2. The whole terrain is tectonically disturbed and compressed; the most permeable fracture system is perpendicular to the structural “b” axes, which gives rise to a general groundwater direction towards the island’s northern coast. Average precipitation is 850 mm/year, but when there is less than 700 mm/year there is a high possibility of sea-water intrusion during the summer season. The risk significantly increases when dry years repeat. Hydrochemical research has shown that two main pollution sources occur at different hydrological moments: sea-water intrusion happens in the dry summer period when there is maximal extraction and almost no recharge; and the washing of nitrates and other humanly caused pollution indicators from the soil and epikarst belt during the rainy season. All factors must be taken into account when planning management and protection of such a sensitive environment.  相似文献   

18.
The study region covers 1,650 km2 of the Mid-Ganga Basin in Bihar, experiencing intensive groundwater draft. The area forms a part of the Gangetic alluvial plain where high incidence of arsenic groundwater contamination (>50 μg/l) has recently been detected. Seventy-seven groundwater samples have been collected and analysed for major ions, iron and arsenic. Arsenic contamination (max 620 μg/l) is confined in hand pump zones (15–35 m) within the newer alluvium deposited during Middle Holocene to Recent age. The older alluvial aquifers are arsenic-safe and recorded maximum concentration as 9 μg/l. Out of 12 hydrochemical facies identified, four have been found arsenic-affected: Ca–HCO3, Mg–HCO3, Ca–Mg–HCO3 and Mg–Ca–HCO3. The geochemical evolution of groundwater, as investigated by graphical interpretation and statistical techniques (correlation, principal component analysis) revealed that dissolution of detrital calcite, dolomite and infiltration of rainwater are the major processes shaping the groundwater chemistry in the newer alluvium. Arsenic and iron showed strong positive correlation. Rainfall infiltration, carrying organic matter from recently accumulated biomass from this flood-prone belt, plays a critical role in releasing arsenic and iron present in the sediments. Geochemical evolution of groundwater in older alluvium follows a different path, where cation-exchange has been identified as a significant process.  相似文献   

19.
Hydrochemical framework of groundwater in the Ankobra Basin,Ghana   总被引:4,自引:0,他引:4  
Hydrochemical and stable isotope (18O and 2H) analyses of groundwater samples were used to establish the hydrochemistry of groundwater in the Ankobra Basin. The groundwater was generally mildly acidic, low in conductivity and undersaturated with respect to carbonate phases. Major ions except bicarbonate were low and dissolved silica was moderately high. Silicate minerals weathering is probably the main process through which major ions enter the groundwater. Groundwater samples clustered tightly along the Global Meteoric Water Line suggesting integrative, smooth and rapid recharge from meteoric origin. The majority of the boreholes and a few hand dug wells cluster towards the Ca–Mg–HCO3 dominant section of the phase diagram, in conformity with the active recharge and short residence time shown by the isotope data. Aluminium, arsenic, manganese, iron and mercury were the only trace metals analysed with concentrations significantly above their respective detection limits. Approximately 20%, 5%, 40% and 25% respectively of boreholes had aluminium, arsenic, iron and manganese concentrations exceeding the respective WHO maximum acceptable limits for drinking water. The relatively large percentage of boreholes with high concentration of aluminium reflects the acidic nature of the groundwater.  相似文献   

20.
 A large amount of the water requirement (municipal, industrial, etc.) of Eskişehir city, Turkey, is supplied from groundwater via wells in the urban area. The groundwater in the Eskişehir Plain alluvium has been polluted by municipal and industrial wastewater, and agricultural activities. The nitrate concentrations at nine sampling points on Porsuk River, the main water course in the plain, ranged from 1.5 to 63.3 mg/l during the period from July 1986 to August 1988. In the same period, the nitrate concentrations measured in water from 51 wells ranged between 2.2–257.0 mg/l. The nitrate content of the groundwater samples was 34.2% above 45 mg/l, the upper limit for nitrate in drinking water standards. High nitrate levels were observed in water from wells in the central and eastern parts of the urban area. The nitrate content of the well water is subject to seasonal fluctuation. In general, low nitrate concentrations were observed in wet seasons, and high ones in dry seasons. Received: 16 April 1996 · Accepted: 2 October 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号