首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
采用双辉等离子渗铬+离子渗氮的复合工艺,以T10钢为基材在560℃研究了该工艺对渗层硬化效果的影响。结果表明:离子渗氮前渗层表面有3-5μm的沉积层,组织致密并与基体结合紧密,基体组织无明显变化;沉积层含铬量达46%以上,扩散层深15-20μm;渗层表面物相均由Fe、Fe-Cr、Cr7C3、Cr23C6等组成;表面显微硬度达650-850HV,硬度向内呈梯度分布。渗镀层经离子渗氮后的组织与氮化前的组织无明显变化,但表面物相为Fe-Cr、Cr7C3、Cr23C6、CrN、Fe4N,表面显微硬度1000-1350HV,较未渗氮前提高65%以上,表明本复合工艺能有效提高铬渗镀层的显微硬度。  相似文献   

2.
保证高的综合实用性能要求,是研究复合表面强化工艺的现实任务。作为低碳钢以形成氮化物元素(V、Cr、Mo、Al)激光合金化,而后化学热处理工序的配合工作的研究是有前途的。这种复合处理保证了残余应力有利的分布,最大提高强化层的显微硬度。同时,也比渗氮和和氮化型38Cr2MoAlA钢的耐磨性提高到1.5~3倍。  相似文献   

3.
采用双层辉光离子渗铬与随后的离子渗氮工艺相结合,在Q235钢表面分别进行渗铬+渗氮、渗氮+渗铬+渗氮以及渗氮+渗铬复合工艺处理;考察不同工艺条件下渗层的组织及性能。结果表明:前两种工艺表面均出现离子氮化白亮层(ε相);三种工艺渗层主要相组成为:铁一铬固溶体(Fe-Cr)、铁的碳化物(Fe3C)和氮化物(Fe3N)、铬氮化合物(Cr2N)及少量的铬碳化合物(Cr23C6)。在本实验条件下,渗铬+渗氮的渗层表面显微硬度最高,达到760HV,耐磨性最好,强化效果最明显。  相似文献   

4.
表面形变处理对32Cr3MoVA钢渗氮层组织和性能的影响   总被引:7,自引:0,他引:7  
测定了32Cr3MoVA钢渗氮层的硬度分布、渗层深度和表面的相组成,对比了表面层形变后渗氮和表面未形变直接渗氮试样的组织和力学性能。结果表明,表面层形变后再渗氮可使渗氮层深度从0.34mm增加到0.61mm,表面层的显微硬度从730HV增加到840HV;X射线衍射分析表明,表面层形变后渗氮层表面的组织主要为体积分数72.6%的Fe3N和27.4%的Fe4N,而表面未形变直接渗氮试样的表面组织为体积分数为17.4%的Fe3N和82.6%的Fe24N10。  相似文献   

5.
为了提高表面硬度和耐磨性,采用不同渗氮介质对TC4钛合金进行真空渗氮处理。采用金相显微镜、X射线衍射、扫描电镜、显微硬度计及耐磨试验机分析了渗氮层的组织与性能。结果表明,TC4钛合金经真空渗氮处理后,可获得由Ti N、Ti2Al N和Ti3Al组成的复合改性层。相同条件下与NH3相比,采用高纯N2渗氮可获得更为致密的氮化物层,表面硬度和耐磨性更高,其表面硬度为1100~1200 HV,有效硬化层深度可达50~60μm。  相似文献   

6.
电弧等离子体辅助渗氮处理Cr12MoV钢的组织结构及硬度   总被引:1,自引:0,他引:1  
采用不同温度对Crl2MoV钢进行电弧等离子体辅助渗氮处理.采用X射线衍射(XRD)分析渗氮层的相组成,采用扫描电子显微镜(SEM)及光学显微镜分别观察渗氮样品表面形貌及横截面形貌,利用显微硬度计测试渗氮层的硬度分布.结果表明:实验钢渗氮层的结构由CrN+γ'-Fe4N+ε-Fe3N的化合物层及由含氮马氏体相α-Fe (N)组成,渗氮层的厚度随处理温度的升高而增加.渗氮处理后能明显提高Cr12MoV钢基体的显微硬度.  相似文献   

7.
利用脉冲直流辉光等离子技术,对1Cr11Ni2W2MoV马氏体热强不锈钢进行不同工艺参数的离子渗氮。利用光学显微镜、显微硬度计、XRD对渗氮层的显微组织及硬度进行了分析。结果表明,在所选用的离子渗氮工艺参数下,1Cr11Ni2W2MoV钢渗层只由扩散层组成,渗氮温度≤560℃时,渗层主要由固溶N原子的α相组成,并伴有少量的γ'-Fe4N和CrN析出;随着渗氮温度的升高和渗氮时间的延长,固溶N原子的α相逐渐转变成γ'-Fe4N相,当处理温度达到590℃时,渗层主要由γ'-Fe4N和Cr N组成。离子渗氮后渗层的表面硬度较未渗氮前有显著的提高,在一定范围内,渗层的表面硬度和渗层深度都随着渗氮温度和渗氮时间的增加而增加,渗层硬度梯度分布也随着渗氮时间的延长变得平缓。  相似文献   

8.
《铸造》2015,(10)
采用IPG的YLS-3000型光纤激光器对Cr12Mo V钢表面进行原位激光-渗氮处理。通过光镜、扫描电镜、X射线衍射及金相显微硬度计,分析研究不同激光处理参数对渗氮层组织及性能的影响。结果表明,在扫描速度和离焦量一定的条件下,Cr12Mo V激光熔凝层深度随激光功率的增加而增大,激光渗氮处理可使材料表面显微硬度提高。Cr12Mo V钢激光渗氮后的组织由熔凝区、热影响区及基体三部分组成。随着激光熔凝速度的增大,熔凝区树枝晶逐渐变得细小。随着激光熔凝功率的增加,熔凝区树枝晶逐渐变得粗大。熔凝层的硬度峰值出现在距材料表面1.0 mm附近,两侧呈对称降低,硬度峰值则随激光功率的增加而增加。  相似文献   

9.
通过与调质处理比较,研究淬火-分配与盐浴淬火两种介稳态预备热处理对38Cr Mo Al钢渗氮后组织与硬度的影响。利用金相显微镜、显微硬度计和X射线衍射仪对渗氮层进行分析。结果表明:介稳态渗氮试样渗氮层的硬度高于常规调质渗氮层。在同一气体渗氮条件下,介稳态渗氮后化合物层厚度与渗氮层深度大于调质后渗氮的渗层。预备热处理状态对渗氮后试样表面相的组成几乎没有影响。  相似文献   

10.
本文对38Cr Mo Al钢离子渗氮与激光淬火硬化层倍增技术进行了研究;首先对渗氮层氮浓度分布及激光温度场进行模拟,并采用Thermo-Calc软件对Fe-C-N三相点进行了计算,从而对复合改性工艺进行设计;然后通过实验对模拟计算结果进行验证。结果表明:渗氮与激光淬火硬化层深相比于渗氮层或激光淬火层均有大幅度提升。渗氮与激光淬火硬化层倍增机制在于N元素的引入使相变温度从Fe-C二元共析点727℃降低到Fe-N-C三元共析点的577℃,因此在相同的温度分布下表层能够发生相变硬化的深度增加。  相似文献   

11.
不同压力对 TC4 钛合金真空脉冲渗氮的影响   总被引:1,自引:0,他引:1  
杨闯  刘静  马亚芹  洪流 《表面技术》2015,44(8):76-80,114
目的采用不同压力对TC4钛合金进行真空脉冲渗氮处理,提高其表面硬度及耐磨性。方法通过金相显微镜、X射线衍射仪、显微硬度计及耐磨试验机分析渗氮硬化层的组织与性能。结果 TC4钛合金经过真空气体渗氮处理后,形成了由Ti N,Ti2Al N和钛铝金属间化合物Ti3Al组成的复合改性层。渗氮压力太低,表面氮化物数量较少,氮化物层较薄;随渗氮压力的增大,表面氮化物数量增多,表面硬度及耐磨性增加。压力为0.015 MPa时,氮化物层表面硬度最大,表面硬度为1100~1200HV,有效硬化层深度为50~60μm。渗氮压力继续增加,表层组织变得疏松,表面硬度及耐磨性开始降低。结论选择合适的渗氮压力和表面氮浓度进行真空脉冲渗氮,可以提高钛合金表面硬度,改善耐磨性。  相似文献   

12.
对316L不锈钢进行了QPQ(Quench-Polish-Quench)处理,研究了600℃渗氮温度下保温(60、90、120、150和180min)后渗层的组织和性能。利用光学显微镜、SEM、XRD、显微维氏硬度计和摩擦磨损机分析材料渗层的显微组织、物相、硬度和耐磨性。结果表明,316L不锈钢经QPQ处理后,渗层表面氧化层由Fe3O4组成,中间化合物层的物相主要包括Fe2~3N、Fe4N、Cr N和α-N相,靠近基体的扩散层主要由Cr N和γN相组成。随着渗氮时间延长,化合物层厚度从60 min的16.54μm增加到180 min的34.94μm,化合物层厚度与渗氮时间呈抛物线关系。与未处理试样相比,QPQ处理试样硬度值提高了4~6倍。干摩擦磨损测试表明,未处理试样表面发生粘着磨损,磨损量和磨损率较大;渗氮后150 min试样耐磨性最好。  相似文献   

13.
《铸造》2016,(8)
为提高马氏体不锈钢0Cr13Ni4Mo的耐磨性,对水泵叶片进行表面处理,具体为分别在450℃、480℃和510℃对其进行2 h的盐浴渗氮。使用显微硬度计、XRD衍射仪、光镜、电化学工作站、摩擦磨损试验机及SEM等设备,研究了渗氮温度对0Cr13Ni4Mo钢的表面物相、硬度、渗层显微形貌、耐蚀性以及耐磨性的影响。结果显示:随着渗氮温度升高,物相由氮原子在马氏体中的过饱和固溶体α'N转变为Cr N和γ'相,材料点蚀电位下降,同时表面硬度增加,510℃处理后可达HV 1 200,渗层厚度为20μm,Cr N相大量析出,点蚀电位下降360 m V,磨损体积为未渗氮样品的17.6%,减磨效果明显。  相似文献   

14.
用滴尿素溶液的方法对W6Mo5Cr4V2钢进行氧氮共渗处理和在氨气与水蒸气环境中对H13钢进行氧氮共渗处理。利用SEM、XRD、显微硬度计和数码相机等研究氧氮共渗层的微观组织、结构及表面形貌。结果表明:两种氧氮共渗工艺均可在两种钢表面形成光滑、稳定、无裂纹的渗层。H13钢氧氮共渗工艺能得到共渗组织为Fe3O4和Fe3N的化合物层,且渗层厚,硬度梯度平缓,渗氮效果好。  相似文献   

15.
目的 提高Cr18Mn21Mo2.5钢的耐蚀性和耐磨性。方法 使用中频感应炉炼制9种正交设计固溶渗氮用钢,通过正交试验的极差分析得出渗氮效率最高的实验用钢(Cr18Mn21Mo2.5钢),采用高纯氮气在常压下对其进行固溶渗氮处理,同时对渗层的耐蚀性和耐磨性进行测试及机理分析。利用光学显微镜和XRD研究了Cr18Mn21Mo2.5钢及其渗氮层的显微组织及相组成,采用显微硬度测试仪对固溶渗氮后Cr18Mn21Mo2.5钢的硬度分布进行表征,采用电化学工作站及高速载流试验机进行耐蚀性及耐磨性研究。结果 在优化成分后炼制的Cr18Mn21Mo2.5钢具有良好的强度及韧性,对其在1200 ℃下固溶渗氮24 h可以制备出厚度高达1.4 mm的单一奥氏体渗层。渗氮后腐蚀电位提高,腐蚀电流降低。相比于未渗氮试样,渗氮(1200 ℃,24 h)后试样的阻抗弧半径由2500 Ω增大到8000 Ω,摩擦系数由0.33降低到0.28,磨损量从15.5 mg降低到8.7 mg。渗氮后Cr18Mn21Mo2.5钢的耐蚀性及耐磨性明显提高。结论 固溶渗氮后,N固溶到奥氏体晶格间隙中,固溶态的N促进钝化膜再构,同时N的固溶强化使材料表面硬度提高,渗氮层N含量的提高和渗层厚度的增加均有利于提高耐蚀性和耐磨性。  相似文献   

16.
00Cr22Ni5Mo3N中合金双相不锈钢的热处理   总被引:1,自引:0,他引:1  
00Cr22Ni5Mo3N中合金双相不锈钢具有优良的耐腐蚀性和较高的强度,但不能热处理相变强化。离子渗氮可大大提高其表面硬度。研究了离子渗氮介质、工艺参数对00Cr22Ni5Mo3N钢渗氮层硬度、深度、脆性和均匀性的影响,介绍了已成功应用于该钢的离子渗氮工艺。  相似文献   

17.
采用扫描电镜、洛氏硬度计和维氏显微硬度计研究了渗氮140 h对渗碳+淬火+回火G13Cr4Mo4Ni4V钢微观组织及硬度的影响。结果表明,渗碳+淬火+回火后G13Cr4Mo4Ni4V钢有效渗碳层深度为1.45 mm,渗碳层最高硬度为785 HV,心部硬度为420 HV,经渗氮处理后有效渗碳+渗氮层深度降为1.34 mm,渗氮层深度为0.22 mm,渗氮层最高硬度可达到948 HV,心部硬度为451 HV,较未渗氮试样硬度略有提高。渗碳+淬火+回火和添加渗氮处理后G13Cr4Mo4Ni4V钢的表面洛氏硬度相当,均在62~65 HRC 之间,但渗氮处理后试样的硬度波动性较大。添加140 h渗氮的渗碳+淬火+回火后G13Cr4Mo4Ni4V钢实现了“表面硬心部韧”的目标,渗氮层深度满足工程需要,但添加渗氮处理后G13Cr4Mo4Ni4V钢在渗碳层和渗氮层出现类网状碳化物,因此在渗氮过程中需要综合考虑渗氮层深度和微观组织,以获得良好的综合力学性能。  相似文献   

18.
张晖  何宜柱  李明喜 《热处理》2010,25(6):48-51
采用X射线衍射、激光拉曼光谱和极化曲线试验等技术分析了QPQ复合处理对Q235钢渗氮层结构和性能的影响。研究表明,激光拉曼光谱能较好地鉴别渗氮层的精细结构和基体中的细小化合物析出相,QPQ技术的氧化处理可使氧离子沿化合物层缺陷向内扩散,所获得的渗氮层结构由外向内依次为Fe3O4和Fe3N两相混合层、化合物层和扩散层。与普通液体渗氮工艺相比,QPQ渗氮层具有更高的硬度和更好的耐腐蚀性能。  相似文献   

19.
对2Cr13钢进行了440℃等离子体渗氮,利用金相显微镜(OM)、分析天平、X射线衍射仪(XRD)、显微硬度计和电化学工作站等仪器,对渗氮层的显微结构、增重、相组成、硬度分布和耐腐蚀性能进行了测试。结果表明:2Cr13钢在440℃氮氢比为1∶3条件下渗氮4 h、8 h和16 h后,渗氮层厚度逐渐增加,最厚为58.9μm;渗氮层质量随时间的增加而增大,增重最高为1.57×10~(-3)g/cm~2;渗氮层显微硬度显著增高,最大为1170.0 HV0.05;渗氮层表面由ε-Fe_3N和γ'-Fe_4N组成;渗氮层表面极化曲线出现钝化区,腐蚀速率显著下降,耐蚀性显著提高。  相似文献   

20.
为了提高TC4钛合金表面硬度及耐磨性,采用不同的间歇渗氮周期对其进行真空间歇渗氮处理。通过金相观察、X射线衍射(XRD)、显微硬度计和耐磨试验机分析了渗氮层组织与性能。结果表明,TC4钛合金经真空间歇渗氮处理后,形成了由Ti N、Ti2Al N和钛铝金属间化合物Ti3Al组成的复合改性层。间歇渗氮周期较小,氮扩散区较窄,随间歇渗氮周期增加,氮明显向内扩散形成了一定宽度的氮扩散区,渗氮周期为30 min时,表面硬度为1100~1200 HV0.1,有效硬化层深度为60μm,渗氮周期继续增加,氮化物层开始变得疏松,表面硬度和耐磨性开始降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号