首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
原核生物作为宿主细胞被广泛应用于异源蛋白质的重组表达,并且为生物活性蛋白质的制备提供了一种高效、经济的方法,因而在分子生物学中得到普遍的应用。然而,病毒蛋白在使用原核重组表达系统进行重组表达时,会出现病毒蛋白溶解性差和表达量低等问题。因此,通过使用各种融合标签以增加目的重组蛋白的表达量和溶解性成为有效的方法。本研究通过使用3种融合标签(EDA标签、MBP标签和GST标签)以获得表达量高的可溶性重组表达猪圆环病毒2型壳蛋白;并比较3种融合标签对该蛋白表达量、溶解性和稳定性的影响。研究结果表明,EDA标签可以显著提高重组表达的猪圆环病毒2型壳蛋白表达量,并且能够增强该蛋白的稳定性;MBP标签可增强重组表达的猪圆环病毒2型壳蛋白表达量,但是不能改善该蛋白的稳定性;GST标签能够增强该重组表达蛋白的表达量,但是不能增强该蛋白的溶解性和稳定性。本研究将EDA作为PCV2-CP蛋白的融合标签,显著提高PCV2-CP-EDA重组蛋白的表达量和增强该重组蛋白的稳定性,为病毒蛋白的可溶性重组表达提供了一种新的融合标签。  相似文献   

2.
重组表达猪圆环病毒2型衣壳蛋白的抗原特性分析   总被引:3,自引:0,他引:3  
将猪圆环病毒2型(PCV2 )去核定位信号衣壳蛋白(Nuclearlocalizationsignal_defectedcapsidprotein ,dCap)与谷胱甘肽_S_转移酶(GST)融合,在大肠杆菌中表达,经纯化和凝血酶剪切分别获得纯化的GST_dCap融合蛋白和dCap蛋白,Westernblot结果表明二者都能与猪抗PCV2血清发生特异性反应。dCap蛋白免疫小鼠制备的单克隆抗体,不仅能特异地与GST_dCap融合蛋白、dCap蛋白和纯化的PCV2粒子发生反应,而且能特异地与PK_15细胞内的PCV2病毒颗粒发生反应,其中抗dCap蛋白的单克隆抗体4C4、3F6和2G7具有阻止病毒感染细胞的能力。表明原核表达的dCap蛋白完全或部分正确模拟了PCV2天然衣壳蛋白的构像,PCV2衣壳蛋白存在阻止PCV2病毒感染细胞的功能性表位。同时重组PCV2dCap蛋白的获得为进一步研究Cap蛋白晶体结构和将重组的dCap蛋白作为抗原建立血清学诊断试剂及疫苗研究提供了基础  相似文献   

3.
为了建立一种简便的检测猪圆环病毒2型(PCV2)的方法,本实验将PCV2 的ORF2 基因片段整合到巴斯德毕赤酵母(Pichia pastoris)菌株X 33染色体上,构建了X 33(pPICZa ORF2)重组工程菌。经甲醇诱导后,成功的表达出ORF2基因片段。经过Bradford 蛋白质总含量测定和凝胶薄层扫描结果表明,表达产物占重组工程菌培养上清总蛋白的58%,表达量可达47mg/ L。间接ELISA结果初步表明重组表达产物具有良好的抗原性,能够有效地区分PCV2型病毒标准阳性与阴性血清。  相似文献   

4.
猪圆环病毒II型ORF2基因在酵母中的高效分泌表达   总被引:2,自引:0,他引:2  
为了建立一种简便的检测猪圆环病毒2型(PCV2)的方法,本实验将PCV2的ORF2基因片段整合到巴斯德毕赤酵母(Pichia pastoris)菌株X-33染色体上,构建了X-33(pPICZa-ORF2)重组工程菌.经甲醇诱导后,成功的表达出ORF2基因片段.经过Bradford 蛋白质总含量测定和凝胶薄层扫描结果表明,表达产物占重组工程菌培养上清总蛋白的58%,表达量可达47mg/ L.间接ELISA结果初步表明重组表达产物具有良好的抗原性,能够有效地区分PCV2型病毒标准阳性与阴性血清.  相似文献   

5.
重组人BMP6在大肠杆菌中可溶表达、纯化及活性分析   总被引:2,自引:0,他引:2  
BMP6是一种调节成骨细胞和成软骨细胞分化的骨诱导因子,在修复各种骨缺损方面具有很好的应用潜力.有诱骨活性的BMP6是多二硫键的二聚体蛋白,疏水性极强容易聚集沉淀.为了在大肠杆菌中可溶表达具有生物活性的重组人BMP6(rhBMP6),构建了具有TRX、GST、MBP、CBD融合标签和His6标签的rhBMP6成熟肽原核表达载体,调节诱导温度和IPTG浓度,比较不同融合标签和诱导条件对目的蛋白表达量和溶解性的影响.结果表明,MBP最能有效的增强rhBMP6的溶解性,诱导条件对溶解性影响较小.大肠杆菌BL21 trxB(DE3)这种硫氧还蛋白还原酶缺陷菌株为rhBMP6二硫键在胞质中形成提供了合适的氧化还原环境.MBP和BL21 trxB(DE3)相结合在细胞质中高效可溶表达出了BMP6融合蛋白二聚体.表达产物经亲和层析和凝胶排阻层析纯化后,能诱导成肌细胞系C2C12向成骨细胞方向转化.  相似文献   

6.
为了建立一种简便的检测猪圆环病毒2型(PCV2)的方法,本实验将PCV2的ORF2基因片段整合到巴斯德毕赤酵母(Pichia pastoris)菌株X-33染色体上,构建了X-33(pPICZa-ORF2)重组工程菌.经甲醇诱导后,成功的表达出ORF2基因片段.经过Bradford 蛋白质总含量测定和凝胶薄层扫描结果表明,表达产物占重组工程菌培养上清总蛋白的58%,表达量可达47mg/ L.间接ELISA结果初步表明重组表达产物具有良好的抗原性,能够有效地区分PCV2型病毒标准阳性与阴性血清.  相似文献   

7.
BMP6是一种调节成骨细胞和成软骨细胞分化的骨诱导因子, 在修复各种骨缺损方面具有很好的应用潜力。有诱骨活性的BMP6是多二硫键的二聚体蛋白, 疏水性极强容易聚集沉淀。为了在大肠杆菌中可溶表达具有生物活性的重组人BMP6(rhBMP6), 构建了具有TRX、GST、MBP、CBD融合标签和His6标签的 rhBMP6成熟肽原核表达载体, 调节诱导温度和IPTG浓度, 比较不同融合标签和诱导条件对目的蛋白表达量和溶解性的影响。结果表明, MBP最能有效的增强rhBMP6的溶解性, 诱导条件对溶解性影响较小。大肠杆菌BL21 trxB(DE3)这种硫氧还蛋白还原酶缺陷菌株为rhBMP6二硫键在胞质中形成提供了合适的氧化还原环境。MBP和BL21 trxB(DE3)相结合在细胞质中高效可溶表达出了BMP6融合蛋白二聚体。表达产物经亲和层析和凝胶排阻层析纯化后, 能诱导成肌细胞系C2C12向成骨细胞方向 转化。  相似文献   

8.
融合蛋白沉淀技术是一种用来研究蛋白质相互作用的新的体外实验技术, 通常利用蛋白亲和标签与探针蛋白融合表达来钓取未知相互作用蛋白或验证已知蛋白间的相互作用, 其中以谷胱甘肽巯基转移酶(GST)标签最为常用。LMO2(由LIM only缩写得名, 也称Ttg-2或Rbtn2)是一种小分子量难溶蛋白。利用原核系统分别表达了含有GST和麦芽糖结合蛋白(MBP)两种标签的LMO2融合蛋白, 发现GST-LMO2融合蛋白以包涵体的形式表达, 而MBP-LMO2融合蛋白则能够以可溶形式表达, 而且MBP-LMO2的表达量明显高于GST-LMO2融合蛋白。将可溶性的MBP-LMO2融合蛋白和复性后的GST-LMO2融合蛋白分别用于钓取K562细胞中LMO2的结合蛋白, 结果显示二者都可以结合K562细胞中内源性的GATA1蛋白, 而MBP-LMO2融合蛋白捕获的GATA1蛋白明显多于复性后的GST-LMO2融合蛋白。这一结果提示, 在研究一些分子量小、疏水性强的蛋白质时改变标签蛋白可能是一种有益的尝试。  相似文献   

9.
不同蛋白标签对LMO2融合蛋白沉淀实验的影响   总被引:1,自引:0,他引:1  
融合蛋白沉淀技术是一种用来研究蛋白质相互作用的新的体外实验技术, 通常利用蛋白亲和标签与探针蛋白融合表达来钓取未知相互作用蛋白或验证已知蛋白间的相互作用, 其中以谷胱甘肽巯基转移酶(GST)标签最为常用。LMO2(由LIM only缩写得名, 也称Ttg-2或Rbtn2)是一种小分子量难溶蛋白。利用原核系统分别表达了含有GST和麦芽糖结合蛋白(MBP)两种标签的LMO2融合蛋白, 发现GST-LMO2融合蛋白以包涵体的形式表达, 而MBP-LMO2融合蛋白则能够以可溶形式表达, 而且MBP-LMO2的表达量明显高于GST-LMO2融合蛋白。将可溶性的MBP-LMO2融合蛋白和复性后的GST-LMO2融合蛋白分别用于钓取K562细胞中LMO2的结合蛋白, 结果显示二者都可以结合K562细胞中内源性的GATA1蛋白, 而MBP-LMO2融合蛋白捕获的GATA1蛋白明显多于复性后的GST-LMO2融合蛋白。这一结果提示, 在研究一些分子量小、疏水性强的蛋白质时改变标签蛋白可能是一种有益的尝试。  相似文献   

10.
猪圆环病毒2型(PCV2)Cap蛋白基因是该病毒基因工程疫苗的重要目的基因,但其在大肠杆菌表达系统中的表达产物通常以包涵体形式存在,影响其作为亚单位疫苗使用的免疫保护作用。将ORF2基因密码子改造为大肠杆菌偏爱的密码子,或构建MPG与ORF2基因融合,分别克隆至表达载体pET28a,再转化至大肠杆菌BL21(DE3),经IPTG诱导表达。SDS-PAGE和Western blot结果证实改造后的PCV2 Cap蛋白基因实现了可溶性表达。将上述两种重组蛋白纯化后,分别与GEL01、ISA206或ISA15A三种佐剂混合配制疫苗,小鼠免疫保护试验结果证明,以GEL01为佐剂的两免疫组PCV2 ELISA抗体和中和抗体水平最高。攻毒试验结果显示,除ISA15A组外,其他各免疫组脾脏中 PCV2 含量都显著低于非免疫对照组,表明两种重组蛋白与佐剂GEL01和ISA206制成的疫苗可诱导产生一定水平的免疫保护作用,为PCV2亚单位疫苗的研制奠定了基础。  相似文献   

11.
Although most commonly used for protein production, expression of soluble and functional recombinant protein in Escherichia coli is still a major challenge. The development and application of fusion tags that can facilitate protein expression and solubility partly solve this problem, however, under most circumstance, the fusion tags have to be removed by proteases in order to use the proteins. Because the tag removal using proteases increases cost and introduces extra purification steps, it remains a significant problem that must be resolved before being widely used in industry production. Ubiquitin and SUMO have been successfully used to enhance protein expression and solubility. In the last decades, intein has also been widely used in protein production for its self-cleavage property, which could help to remove the fusion tag without any protease. Here, we take the advantages of ubiquitin, SUMO2 and intein in protein expression. We constructed tandem ubiquitin-intein and SUMO2-intein fusion tags, and chose human MMP13 (amino acid 104-274) and eGFP as the passenger proteins that fused to the C-terminus of the tags. These constructs were expressed in E. coli and both MMP13 and eGFP expression and solubility were evaluated. Both tags showed the ability to enhance the solubility of MMP13 and eGFP and improve the expression of eGFP, and the SUMO2-intein having a more significant effect. Both ubiquitin-intein-eGFP and SUMO2-intein-eGFP were purified using Ni-NTA column chromatography and self-cleavaged by changing pH. The recombinant un-tagged eGFP were released and eluted with high homogeneity. In summary, ubiquitin-intein and SUMO2-intein are convenient and useful fusion tags that can enhance the expression, solubility and improve the purification process of the model heterologous protein and these tags may have a good prospect in protein production.  相似文献   

12.
The Escherichia coli host system is an advantageous choice for simple and inexpensive recombinant protein production but it still presents bottlenecks at expressing soluble proteins from other organisms. Several efforts have been taken to overcome E. coli limitations, including the use of fusion partners that improve protein expression and solubility. New fusion technologies are emerging to complement the traditional solutions. This work evaluates two novel fusion partners, the Fh8 tag (8 kDa) and the H tag (1 kDa), as solubility enhancing tags in E. coli and their comparison to commonly used fusion partners. A broad range comparison was conducted in a small-scale screening and subsequently scaled-up. Six difficult-to-express target proteins (RVS167, SPO14, YPK1, YPK2, Frutalin and CP12) were fused to eight fusion tags (His, Trx, GST, MBP, NusA, SUMO, H and Fh8). The resulting protein expression and solubility levels were evaluated by sodium dodecyl sulfate polyacrylamide gel electrophoresis before and after protein purification and after tag removal. The Fh8 partner improved protein expression and solubility as the well-known Trx, NusA or MBP fusion partners. The H partner did not function as a solubility tag. Cleaved proteins from Fh8 fusions were soluble and obtained in similar or higher amounts than proteins from the cleavage of other partners as Trx, NusA or MBP. The Fh8 fusion tag therefore acts as an effective solubility enhancer, and its low molecular weight potentially gives it an advantage over larger solubility tags by offering a more reliable assessment of the target protein solubility when expressed as a fusion protein.  相似文献   

13.
For proteins of higher eukaryotes, such as plants, which have large genomes, recombinant protein expression and purification are often difficult. Expression levels tend to be low and the expressed proteins tend to misfold and aggregate. We tested seven different expression vectors in Escherichia coli for rapid subcloning of rice genes and for protein expression and solubility levels. Each expressed gene product has an N-terminal fusion protein and/or tag, and an engineered protease site upstream of the mature rice protein. Several different fusion proteins/tags and protease sites were tested. We found that the fusion proteins and the protease sites have significant and varying effects on expression and solubility levels. The expression vector with the most favorable characteristics is pDEST-trx. The vector, which is a modified version of the commercially available expression vector, pET-32a, contains an N-terminal thioredoxin fusion protein and a hexahistidine tag, and is adapted to the Gateway expression system. However, addition of an engineered protease site could drastically change the expression and solubility properties. We selected 135 genes corresponding to potentially interesting rice proteins, transferred the genes from cDNAs to expression vectors, and engineered in suitable protease sites N-terminal to the mature proteins. Of 135 genes, 131 (97.0%) could be expressed and 72 (53.3%) were soluble when the fusion proteins/tags were present. Thirty-eight mature-length rice proteins and domains (28.1%) are suitable for NMR solution structure studies and/or X-ray crystallography. Our expression systems are useful for the production of soluble plant proteins in E. coli to be used for structural genomics studies.  相似文献   

14.
The production of recombinant protein in Escherichia coli is often hampered by low expression levels and low solubility. A variety of methodologies have been developed including protein production at low temperature, and fusion protein expression using soluble protein tags. Here, we present the novel cold-shock vector pCold-GST for high-level expression of soluble proteins in E. coli. This vector is a modified pCold I cold-shock vector that includes the glutathione S-transferase (GST) tag. The pCold-GST expression system developed was applied to 10 proteins that could not be expressed using conventional E. coli expression methodologies, and nine of these proteins were successfully obtained in the soluble fraction. The expression and purification of two unstable protein fragments were also demonstrated by employing a C-terminal hexa-histidine tag for purification purposes. The purified proteins were amenable to NMR analyses. These data suggest that the pCold-GST expression system can be utilized to improve the expression and purification of various proteins.  相似文献   

15.
Protein-fusion constructs have been used with great success for enhancing expression of soluble recombinant protein and as tags for affinity purification. Unfortunately the most popular tags, such as GST and MBP, are large, which hinders direct NMR studies of the fusion proteins. Cleavage of the fusion proteins often re-introduces problems with solubility and stability. Here we describe the use of N-terminally fused protein G (B1 domain) as a non-cleavable solubility-enhancement tag (SET) for structure determination of a dimeric protein complex. The SET enhances the solubility and stability of the fusion product dramatically while not interacting directly with the protein of interest. This approach can be used for structural characterization of poorly behaving protein systems, and would be especially useful for structural genomics studies.  相似文献   

16.

Background

Eukaryotic ubiquitin and SUMO are frequently used as tags to enhance the fusion protein expression in microbial host. They increase the solubility and stability, and protect the peptides from proteolytic degradation due to their stable and highly conserved structures. Few of prokaryotic ubiquitin-like proteins was used as fusion tags except ThiS, which enhances the fusion expression, however, reduces the solubility and stability of the expressed peptides in E. coli. Hence, we investigated if MoaD, a conserved small sulfur carrier in prokaryotes with the similar structure of ubiquitin, could also be used as fusion tag in heterologous expression in E. coli.

Results

Fusion of MoaD to either end of EGFP enhanced the expression yield of EGFP with a similar efficacy of ThiS. However, the major parts of the fusion proteins were expressed in the aggregated form, which was associated with the retarded folding of EGFP, similar to ThiS fusions. Fusion of MoaD to insulin chain A or B did not boost their expression as efficiently as ThiS tag did, probably due to a less efficient aggregation of products. Interestingly, fusion of MoaD to the murine ribonuclease inhibitor enhanced protein expression by completely protecting the protein from intracellular degradation in contrast to ThiS fusion, which enhanced degradation of this unstable protein when expressed in E. coli.

Conclusions

Prokaryotic ubiquitin-like protein MoaD can act as a fusion tag to promote the fusion expression with varying mechanisms, which enriches the arsenal of fusion tags in the category of insoluble expression.  相似文献   

17.
Expression of archaeal proteins in soluble form is of importance because archaeal proteins are usually produced as insoluble inclusion bodies in Escherichia coli. In this study, we investigated the use of soluble fusion tags to enhance the solubility of two archaeal proteins, d-gluconate dehydratase (GNAD) and 2-keto-3-deoxy-D-gluconate kinase (KDGK), key enzymes in the glycolytic pathway of the thermoacidophilic archaeon Sulfolobus solfataricus. These two proteins were produced as inclusion bodies in E. coli when polyhistidine was used as a fusion tag. To reduce inclusion body formation in E. coli, GNAD and KDGK were fused with three partners, thioredoxin (Trx), glutathione-S-transferase (GST), and N-utilization substance A (NusA). With the use of fusion-partners, the solubility of the archaeal proteins was remarkably enhanced, and the soluble fraction of the recombinant proteins was increased in this order: Trx>GST>NusA. Furthermore, In the case of recombinant KDGKs, the enzyme activity of the Trx-fused proteins was 200-fold higher than that of the polyhistidine-fusion protein. The strategy presented in this work may contribute to the production of other valuable proteins from hyperthermophilic archaea in E. coli.  相似文献   

18.
Despite the availability of numerous gene fusion systems, recombinant protein expression in Escherichia coli remains difficult. Establishing the best fusion partner for difficult-to-express proteins remains empirical. To determine which fusion tags are best suited for difficult-to-express proteins, a comparative analysis of the newly described SUMO fusion system with a variety of commonly used fusion systems was completed. For this study, three model proteins, enhanced green fluorescent protein (eGFP), matrix metalloprotease-13 (MMP13), and myostatin (growth differentiating factor-8, GDF8), were fused to the C termini of maltose-binding protein (MBP), glutathione S-transferase (GST), thioredoxin (TRX), NUS A, ubiquitin (Ub), and SUMO tags. These constructs were expressed in E. coli and evaluated for expression and solubility. As expected, the fusion tags varied in their ability to produce tractable quantities of soluble eGFP, MMP13, and GDF8. SUMO and NUS A fusions enhanced expression and solubility of recombinant proteins most dramatically. The ease at which SUMO and NUS A fusion tags were removed from their partner proteins was then determined. SUMO fusions are cleaved by the natural SUMO protease, while an AcTEV protease site had to be engineered between NUS A and its partner protein. A kinetic analysis showed that the SUMO and AcTEV proteases had similar KM values, but SUMO protease had a 25-fold higher kcat than AcTEV protease, indicating a more catalytically efficient enzyme. Taken together, these results demonstrate that SUMO is superior to commonly used fusion tags in enhancing expression and solubility with the distinction of generating recombinant protein with native sequences.  相似文献   

19.
Zou Z  Cao L  Zhou P  Su Y  Sun Y  Li W 《Journal of biotechnology》2008,135(4):333-339
High expression of recombinant proteins in Escherichia coli (E. coli) often leads to protein aggregation. One popular approach to address this problem is the use of fusion tags (or partners) that improve the solubility of the proteins in question. However, such fusion tags are not effective for all proteins. In this study, we demonstrate that the hyper-acidic protein fusion partners can largely enhance the soluble expression of target proteins recalcitrant to the efforts by using routine solubilising tags. This new type of fusion partners examined includes three extremely acidic E. coli polypeptides, i.e. yjgD, the N-terminal domain of rpoD (sigma 70 factor of RNA polymerase) and our preliminarily evaluated msyB. The target proteins used are highly aggregation-prone, including EK (the bovine enterokinase), TEV (the tobacco etch virus protease) and rbcL (the large subunit of tobacco ribulose-1,5-bisphosphate carboxylase/oxygenase). On removal in vitro and in vivo of the fusion tags by using yeast SUMO/Ulp1 reaction and TEV auto-cleavage, the resultant findings indicate the hyper-acidic fusion partners can function as intramolecular chaperones assisting in the correct folding of the target proteins.  相似文献   

20.
《MABS-AUSTIN》2013,5(6):1551-1559
Expression of recombinant proteins often takes advantage of peptide tags expressed in fusion to allow easy detection and purification of the expressed proteins. However, as the fusion peptides most often are flexible appendages at the N- or C-terminal, proteolytic cleavage may result in removal of the tag sequence. Here, we evaluated the functionality and stability of 14 different combinations of commonly used tags for purification and detection of recombinant antibody fragments. The tag sequences were inserted in fusion with the c-terminal end of a domain antibody based on the HEL4 scaffold in a phagemid vector. This particular antibody fragment was able to refold on the membrane after blotting, allowing us to detect c-terminal tag breakdown by use of protein A in combination with detection of the tags in the specific constructs. The degradation of the c-terminal tags suggested specific sites to be particularly prone to proteolytic cleavage, leaving some of the tag combinations partially or completely degraded. This specific work illustrates the importance of tag design with regard to recombinant antibody expression in E. coli, but also aids the more general understanding of protein expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号