首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eisner JA 《Nature》2007,447(7144):562-564
Planetary systems (ours included) formed in disks of dust and gas around young stars. Disks are an integral part of the star and planet formation process, and knowledge of the distribution and temperature of inner-disk material is crucial for understanding terrestrial planet formation, giant planet migration, and accretion onto the central star. Although the inner regions of protoplanetary disks in nearby star-forming regions subtend only a few nano-radians, near-infrared interferometry has recently enabled the spatial resolution of these terrestrial zones. Most observations have probed only dust, which typically dominates the near-infrared emission. Here I report spectrally dispersed near-infrared interferometric observations that probe the gas (which dominates the mass and dynamics of the inner disk), in addition to the dust, within one astronomical unit (1 au, the Sun-Earth distance) of the young star MWC 480. I resolve gas, including water vapour and atomic hydrogen, interior to the edge of the dust disk; this contrasts with results of previous spectrally dispersed interferometry observations. Interactions of this accreting gas with migrating planets may lead to short-period exoplanets like those detected around main-sequence stars. The observed water vapour is probably produced by the sublimation of migrating icy bodies, and provides a potential reservoir of water for terrestrial planets.  相似文献   

2.
Brittain SD  Rettig TW 《Nature》2002,418(6893):57-59
Massive planets have now been found orbiting about 80 stars. A long outstanding question critical to theories of planet formation has been the timescale on which gas-giant planets form; in particular, stars more massive than the Sun may blow away the surrounding gas associated with their formation more quickly than it can be accumulated by the protoplanetary cores. Evidence for a protoplanet around a Herbig AeBe star (such stars are 2 3 times more massive than the Sun) would constrain the timescale of planet formation. Here we report the detection of CO and H(3)(+) emission from the 5-10-million-year-old Herbig AeBe star HD141569. We interpret the CO data as indicating that the inner disk surrounding the star is past the early phase of accretion and planetesimal formation, and that most of the gas has been cleared out to a distance of more than 17 astronomical units. CO effectively destroys H(3)(+) (ref. 2), so their presence in the same source is surprising. Moreover, H(3)(+) line emission has previously been detected only from the atmospheres of the giant planets in the Solar System. The H(3)(+) and CO may therefore be distributed in the disk at different circumstellar distances, or, alternatively, H(3)(+) may be located in the extended envelope of a protoplanet.  相似文献   

3.
The edge-on disk surrounding the nearby young star beta Pictoris is the archetype of 'debris disks', which are composed of dust and gas produced by collisions between--and evaporation of--planetesimals, analogues of Solar System comets and asteroids. These disks may provide insight into the formation and early evolution of terrestrial planets. Previous work on beta Pic concluded that the disk gas has roughly solar abundances of elements, but this poses a problem because such gas should rapidly be blown away from the star, contrary to observations showing a stable gas disk in keplerian rotation. Here we report the detection of singly and doubly ionized carbon (C II, C III) and neutral atomic oxygen (O I) gas in the beta Pic disk. Carbon is extremely overabundant relative to every other measured element. This appears to solve the problem of the stable gas disk, because the carbon overabundance should keep the gas disk in keplerian rotation. The overabundance may indicate that the gas is produced from material more carbon-rich than expected of Solar System analogues.  相似文献   

4.
There is a general consensus that planets form within disks of dust and gas around newly born stars. Details of their formation process, however, are still a matter of ongoing debate. The timescale of planet formation remains unclear, so the detection of planets around young stars with protoplanetary disks is potentially of great interest. Hitherto, no such planet has been found. Here we report the detection of a planet of mass (9.8+/-3.3)M(Jupiter) around TW Hydrae (TW Hya), a nearby young star with an age of only 8-10 Myr that is surrounded by a well-studied circumstellar disk. It orbits the star with a period of 3.56 days at 0.04 au, inside the inner rim of the disk. This demonstrates that planets can form within 10 Myr, before the disk has been dissipated by stellar winds and radiation.  相似文献   

5.
C Melis  B Zuckerman  JH Rhee  I Song  SJ Murphy  MS Bessell 《Nature》2012,487(7405):74-76
Stars form with gaseous and dusty circumstellar envelopes, which rapidly settle into disks that eventually give rise to planetary systems. Understanding the process by which these disks evolve is paramount in developing an accurate theory of planet formation that can account for the variety of planetary systems discovered so far. The formation of Earth-like planets through collisional accumulation of rocky objects within a disk has mainly been explored in theoretical and computational work in which post-collision ejecta evolution typically is ignored, although recent work has considered the fate of such material. Here we report observations of a young, Sun-like star (TYC?8241?2652?1) where infrared flux from post-collisional ejecta has decreased drastically, by a factor of about 30, over a period of less than two years. The star seems to have gone from hosting substantial quantities of dusty ejecta, in a region analogous to where the rocky planets orbit in the Solar System, to retaining at most a meagre amount of cooler dust. Such a phase of rapid ejecta evolution has not been previously predicted or observed, and no currently available physical model satisfactorily explains the observations.  相似文献   

6.
Tuthill PG  Monnier JD  Danchi WC 《Nature》2001,409(6823):1012-1014
A star forms when a cloud of dust and gas collapses. It is generally believed that this collapse first produces a flattened rotating disk, through which matter is fed onto the embryonic star at the centre of the disk. When the temperature and density at the centre of the star pass a critical threshold, thermonuclear fusion begins. The remaining disk, which can still contain up to 0.3 times the mass of the star, is then sculpted and eventually dissipated by the radiation and wind from the newborn star. But this picture of the structure and evolution of the disk remains speculative because of the lack of morphological data of sufficient resolution and uncertainties regarding the underlying physical processes. Here we present images of a young star, LkH alpha101, in which the structure of the inner accretion disk is resolved. We find that the disk is almost face-on, with a central gap (or cavity) and a hot inner edge. The cavity is bigger than previous theoretical predictions, and we infer that the position of the inner edge is probably determined by sublimation of dust grains by direct stellar radiation, rather than by disk-reprocessing or viscous-heating processes as usually assumed.  相似文献   

7.
'Hot Jupiter' extrasolar planets are expected to be tidally locked because they are close (<0.05 astronomical units, where 1 au is the average Sun-Earth distance) to their parent stars, resulting in permanent daysides and nightsides. By observing systems where the planet and star periodically eclipse each other, several groups have been able to estimate the temperatures of the daysides of these planets. A key question is whether the atmosphere is able to transport the energy incident upon the dayside to the nightside, which will determine the temperature at different points on the planet's surface. Here we report observations of HD 189733, the closest of these eclipsing planetary systems, over half an orbital period, from which we can construct a 'map' of the distribution of temperatures. We detected the increase in brightness as the dayside of the planet rotated into view. We estimate a minimum brightness temperature of 973 +/- 33 K and a maximum brightness temperature of 1,212 +/- 11 K at a wavelength of 8 mum, indicating that energy from the irradiated dayside is efficiently redistributed throughout the atmosphere, in contrast to a recent claim for another hot Jupiter. Our data indicate that the peak hemisphere-integrated brightness occurs 16 +/- 6 degrees before opposition, corresponding to a hotspot shifted east of the substellar point. The secondary eclipse (when the planet moves behind the star) occurs 120 +/- 24 s later than predicted, which may indicate a slightly eccentric orbit.  相似文献   

8.
Our Solar System was formed from a cloud of gas and dust. Most of the dust mass is contained in amorphous silicates, yet crystalline silicates are abundant throughout the Solar System, reflecting the thermal and chemical alteration of solids during planet formation. (Even primitive bodies such as comets contain crystalline silicates.) Little is known about the evolution of the dust that forms Earth-like planets. Here we report spatially resolved detections and compositional analyses of these building blocks in the innermost two astronomical units of three proto-planetary disks. We find the dust in these regions to be highly crystallized, more so than any other dust observed in young stars until now. In addition, the outer region of one star has equal amounts of pyroxene and olivine, whereas the inner regions are dominated by olivine. The spectral shape of the inner-disk spectra shows surprising similarity with Solar System comets. Radial-mixing models naturally explain this resemblance as well as the gradient in chemical composition. Our observations imply that silicates crystallize before any terrestrial planets are formed, consistent with the composition of meteorites in the Solar System.  相似文献   

9.
beta Pictoris (beta Pic) is a main-sequence star with an edge-on dust disk that might represent a state of the early Solar System. The dust does not seem to be a remnant from the original protoplanetary disk, but rather is thought to have been generated from large bodies like planetesimals and/or comets. The history and composition of the parent bodies can therefore be revealed by determining the spatial distribution, grain size, composition and crystallinity of the dust through high-resolution mid-infrared observations. Here we report that the sub-micrometre amorphous silicate grains around beta Pic have peaks in their distribution around 6, 16 and 30 au (1 au is the Sun-Earth distance), whereas the crystalline and micrometre-sized amorphous silicate grains are concentrated in the disk centre. As sub-micrometre grains are blown quickly out from the system by radiation pressure from the central star, the peaks indicate the locations of ongoing dust replenishment, which originates from ring-like distributions of planetesimals or 'planetesimal belts'.  相似文献   

10.
The abundance of heavy elements (metallicity) in the photospheres of stars similar to the Sun provides a 'fossil' record of the chemical composition of the initial protoplanetary disk. Metal-rich stars are much more likely to harbour gas giant planets, supporting the model that planets form by accumulation of dust and ice particles. Recent ground-based surveys suggest that this correlation is weakened for Neptunian-sized planets. However, how the relationship between size and metallicity extends into the regime of terrestrial-sized exoplanets is unknown. Here we report spectroscopic metallicities of the host stars of 226 small exoplanet candidates discovered by NASA's Kepler mission, including objects that are comparable in size to the terrestrial planets in the Solar System. We find that planets with radii less than four Earth radii form around host stars with a wide range of metallicities (but on average a metallicity close to that of the Sun), whereas large planets preferentially form around stars with higher metallicities. This observation suggests that terrestrial planets may be widespread in the disk of the Galaxy, with no special requirement of enhanced metallicity for their formation.  相似文献   

11.
Song I  Zuckerman B  Weinberger AJ  Becklin EE 《Nature》2005,436(7049):363-365
The slow but persistent collisions between asteroids in our Solar System generate a tenuous cloud of dust known as the zodiacal light (because of the light the dust reflects). In the young Solar System, such collisions were more common and the dust production rate should have been many times larger. Yet copious dust in the zodiacal region around stars much younger than the Sun has rarely been found. Dust is known to orbit around several hundred main-sequence stars, but this dust is cold and comes from a Kuiper-belt analogous region out beyond the orbit of Neptune. Despite many searches, only a few main-sequence stars reveal warm (> 120 K) dust analogous to zodiacal dust near the Earth. Signs of planet formation (in the form of collisions between bodies) in the regions of stars corresponding to the orbits of the terrestrial planets in our Solar System have therefore been elusive. Here we report an exceptionally large amount of warm, small, silicate dust particles around the solar-type star BD+20,307 (HIP 8920, SAO 75016). The composition and quantity of dust could be explained by recent frequent or huge collisions between asteroids or other 'planetesimals' whose orbits are being perturbed by a nearby planet.  相似文献   

12.
In the standard model of terrestrial planet formation, the first step in the process is for interstellar dust to coagulate within a protoplanetary disk surrounding a young star, forming large grains that settle towards the disk plane. Interstellar grains of typical size approximately 0.1 microm are expected to grow to millimetre- (sand), centimetre- (pebble) or even metre-sized (boulder) objects rather quickly. Unfortunately, such evolved disks are hard to observe because the ratio of surface area to volume of their constituents is small. We readily detect dust around young objects known as 'classical' T Tauri stars, but there is little or no evidence of it in the slightly more evolved 'weak-line' systems. Here we report observations of a 3-Myr-old star, which show that grains have grown to about millimetre size or larger in the terrestrial zone (within approximately 3 au) of this star. The fortuitous geometry of the KH 15D binary star system allows us to infer that, when both stars are occulted by the surrounding disk, it appears as a nearly edge-on ring illuminated by one of the central binary components. This work complements the study of terrestrial zones of younger disks that have been recently resolved by interferometry.  相似文献   

13.
The processes leading to the birth of low-mass stars such as our Sun have been well studied, but the formation of high-mass (over eight times the Sun's mass, M(o)) stars remains poorly understood. Recent studies suggest that high-mass stars may form through accretion of material from a circumstellar disk, in essentially the same way as low-mass stars form, rather than through the merging of several low-mass stars. There is as yet, however, no conclusive evidence. Here we report the presence of a flattened disk-like structure around a massive 15M(o) protostar in the Cepheus A region, based on observations of continuum emission from the dust and line emission from the molecular gas. The disk has a radius of about 330 astronomical units (Au) and a mass of 1 to 8 M(o). It is oriented perpendicular to, and spatially coincident with, the central embedded powerful bipolar radio jet, just as is the case with low-mass stars, from which we conclude that high-mass stars can form through accretion.  相似文献   

14.
Molecular hydrogen (H2) is by far the most abundant material from which stars, protoplanetary disks and giant planets form, but it is difficult to detect directly. Infrared emission lines from H2 have recently been reported towards beta Pictoris, a star harbouring a young planetary system. This star is surrounded by a dusty 'debris disk' that is continuously replenished either by collisions between asteroidal objects or by evaporation of ices on Chiron-like objects. A gaseous disk has also been inferred from absorption lines in the stellar spectrum. Here we present the far-ultraviolet spectrum of beta Pictoris, in which H2 absorption lines are not seen. This allows us to set a very low upper limit on the column density of H2: N(H2) 6 x 10-4. As CO would be destroyed under ambient conditions in about 200 years (refs 9, 11), our result demonstrates that the CO in the disk arises from evaporation of planetesimals.  相似文献   

15.
Planets that orbit their parent star at less than about one astronomical unit (1?AU is the Earth-Sun distance) are expected to be engulfed when the star becomes a red giant. Previous observations have revealed the existence of post-red-giant host stars with giant planets orbiting as close as 0.116?AU or with brown dwarf companions in tight orbits, showing that these bodies can survive engulfment. What has remained unclear is whether planets can be dragged deeper into the red-giant envelope without being disrupted and whether the evolution of the parent star itself could be affected. Here we report the presence of two nearly Earth-sized bodies orbiting the post-red-giant, hot B subdwarf star KIC 05807616 at distances of 0.0060 and 0.0076?AU, with orbital periods of 5.7625 and 8.2293 hours, respectively. These bodies probably survived deep immersion in the former red-giant envelope. They may be the dense cores of evaporated giant planets that were transported closer to the star during the engulfment and triggered the mass loss necessary for the formation of the hot B subdwarf, which might also explain how some stars of this type did not form in binary systems.  相似文献   

16.
The tidal disruption of a solar-mass star around a supermassive black hole has been extensively studied analytically and numerically. In these events, the star develops into an elongated banana-shaped structure. After completing an eccentric orbit, the bound debris falls into the black hole, forming an accretion disk and emitting radiation. The same process may occur on planetary scales if a minor body passes too close to its star. In the Solar System, comets fall directly into our Sun or onto planets. If the star is a compact object, the minor body can become tidally disrupted. Indeed, one of the first mechanisms invoked to produce strong gamma-ray emission involved accretion of comets onto neutron stars in our Galaxy. Here we report that the peculiarities of the 'Christmas' gamma-ray burst (GRB 101225A) can be explained by a tidal disruption event of a minor body around an isolated Galactic neutron star. This would indicate either that minor bodies can be captured by compact stellar remnants more frequently than occurs in the Solar System or that minor-body formation is relatively easy around millisecond radio pulsars. A peculiar supernova associated with a gamma-ray burst provides an alternative explanation.  相似文献   

17.
Israelian G  Santos NC  Mayor M  Rebolo R 《Nature》2001,411(6834):163-166
Current models of the evolution of the known extrasolar planetary systems need to incorporate orbital migration and/or gravitational interactions among giant planets to explain the presence of large bodies close to their parent stars. These processes could also lead to planets being ingested by their parent stars, which would alter the relative abundances of elements heavier than helium in the stellar atmospheres. In particular, the abundance of the rare 6Li isotope, which is normally destroyed in the early evolution of solar-type stars but preserved intact in the atmospheres of giant planets, would be boosted substantially. 6Li has not hitherto been observed reliably in a metal-rich star, where metallicity refers to the total abundance of elements heavier than helium. Here we report the discovery of 6Li in the atmosphere of the metal-rich solar-type star HD82943, which is known to have an orbiting giant planet. The presence of 6Li can probably be interpreted as evidence for a planet (or planets) having been engulfed by the parent star.  相似文献   

18.
流体模拟的研究表明,如果多颗行星形成在环绕双星的气体盘中,行星之间的会聚迁移会导致行星之间的散射.本文系统研究了环双星的行星系统中两颗等质量行星(P型行星)之间的散射,目的是探讨散射对P型行星系统构型的影响.数值模拟的研究表明散射后只剩一颗行星的几率最大,一般80%.从某种意义上说,伴星的存在有利于行星的存活,尤其是在靠近双星的地方.我们发现散射会导致行星的向外迁移,这和单恒星系统中的散射现象相反,此现象可以用来解释最近通过成像方法发现的远距离P型行星.即便对于等质量的行星,散射位置的不同会造成偏心率分布的多样性.在靠近双星的位置,幸存行星的偏心率较小;在远离双星的位置,剩余行星的偏心率较大.此外,P型行星之间的散射可使P型行星转变为围绕一颗主星运行的S型行星.  相似文献   

19.
The formation of low-mass stars like our Sun can be explained by the gravitational collapse of a molecular cloud fragment into a protostellar core and the subsequent accretion of gas and dust from the surrounding interstellar medium. Theoretical considerations suggest that the radiation pressure from the protostar on the in-falling material may prevent the formation of stars above ten solar masses through this mechanism, although some calculations have claimed that stars up to 40 solar masses can in principle be formed via accretion through a disk. Given this uncertainty and the fact that most massive stars are born in dense clusters, it was suggested that high-mass stars are the result of the runaway merging of intermediate-mass stars. Here we report observations that clearly show a massive star being born from a large rotating accretion disk. The protostar has already assembled about 20 solar masses, and the accretion process is still going on. The gas reservoir of the circumstellar disk contains at least 100 solar masses of additional gas, providing sufficient fuel for substantial further growth of the forming star.  相似文献   

20.
The Sun's equator and the planets' orbital planes are nearly aligned, which is presumably a consequence of their formation from a single spinning gaseous disk. For exoplanetary systems this well-aligned configuration is not guaranteed: dynamical interactions may tilt planetary orbits, or stars may be misaligned with the protoplanetary disk through chaotic accretion , magnetic interactions or torques from neighbouring stars. Indeed, isolated 'hot Jupiters' are often misaligned and even orbiting retrograde. Here we report an analysis of transits of planets over starspots on the Sun-like star Kepler-30 (ref. 8), and show that the orbits of its three planets are aligned with the stellar equator. Furthermore, the orbits are aligned with one another to within a few degrees. This configuration is similar to that of our Solar System, and contrasts with the isolated hot Jupiters. The orderly alignment seen in the Kepler-30 system suggests that high obliquities are confined to systems that experienced disruptive dynamical interactions. Should this be corroborated by observations of other coplanar multi-planet systems, then star-disk misalignments would be ruled out as the explanation for the high obliquities of hot Jupiters, and dynamical interactions would be implicated as the origin of hot Jupiters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号