首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amorphous silica (ASi) carried in suspension by rivers is an important component in the global Si budget. Water erosion processes in cultivated catchments are likely to drive ASi delivery to the river system. However, no studies have investigated the controls on ASi mobilization by erosional processes in croplands. Rainfall experiments were performed on split fields (i.e. a part conventionally ploughed and a part under reduced tillage) to simulate ASi mobilization by inter‐rill erosion in croplands, and identify its dependency on soil, field and rainfall characteristics. The ASi content of the soil and the inter‐rill erosion rate were determined as the major controls on ASi mobilization. Variables such as tillage technique and crop type did not have a consistent direct or indirect effect. Inter‐rill erosion is clearly selective with respect to ASi, indicating association of ASi with the fine soil fraction and with soil organic carbon. Our experiments demonstrate that erosion increases due to human perturbation will increase the delivery of reactive Si to aquatic systems. We estimate that globally, c. 7% of all reactive Si that enters aquatic systems is derived from erosion of agricultural soils. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
lINTRoDUCTlONTheSouthernPiedmo12tph}siographicregioninthesoutheasternUnitedStatescoversaboutl6.5millionhae\tendingl2OOkmtYomsouthernVirginiatoeast-centralAlabamaandliesbetweentheAppalachianMountainsandthesouthernCoastalPlain(Carrekeretal.,l977).ThePiedmontslopessoutheast\\ardtbrapproximatel}25Oto3ookmtYom35omabovesealeveladjacenttothemountainsto]OOmabo\7esealevela1ongthesoLltheasternedge.Thislbothillsregionisdissectedbymanystreams.Thetopograph}isgentI}rolling,x`ithgentletomoderates…  相似文献   

3.
Soil erosion models are essential tools for the successful implementation of effective and adapted soil conservation measures on agricultural land. Therefore, models are needed that predict sediment delivery and quality, give a good spatial representation of erosion and deposition and allow us to account for various soil conservation measures. Here, we evaluate how well a modified version of the spatially distributed multi‐class sediment transport model (MCST) simulates the effectiveness of control measures for different event sizes. We use 8 year runoff and sediment delivery data from two small agricultural watersheds (0·7 and 3·7 ha) under optimized soil conservation. The modified MCST model successfully simulates surface runoff and sediment delivery from both watersheds; one of which was dominated by sheet and the other was partly affected by rill erosion. Moreover, first results of modelling enrichment of clay in sediment delivery are promising, showing the potential of MCST to model sediment enrichment and nutrient transport. In general, our results and those of an earlier modelling exercise in the Belgian Loess Belt indicate the potential of the MCST model to evaluate soil erosion and deposition under different agricultural land uses. As the model explicitly takes into account the dominant effects of soil‐conservation agriculture, it should be successfully applicable for soil‐conservation planning/evaluation in other environments. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
The pre‐calibrated and validated physically based watershed model, water erosion prediction project (WEPP) was used as a modelling tool for the identification of critical watersheds and evaluation of best management practices for a small hilly watershed (Karso) of India. The land use/cover of the study area was generated using IRS‐1C LISS‐III (linear imaging self scanner) satellite data. The watershed and sub‐watershed boundaries, drainage, slope and soil map of the study area were generated using ARC/INFO geographic information system (GIS). The WEPP model was finally applied to the Karso watershed which lies within Damodar Barakar catchment of India to identify the critical sub‐watersheds on the basis of their simulated average annual sediment yields. Priorities were fixed on the basis of ranks assigned to each critical sub‐watershed based on the susceptibility to erosion. The sub‐watershed having the highest sediment yield was assigned a priority number 1, the next highest value was assigned a priority number 2, and so on. Subsequently, the model was used for evaluating the effectiveness of best management practices (crop and tillage) for conservation of soil for all the sub‐watersheds. On the basis of this study, it is realized that cash crops like soyabean should be encouraged in the upland portion of the sub‐watersheds, and the existing tillage practice (country plough/mould board plough) may be replaced by a field cultivation system for conservation of soil and water in the sub‐watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Crop canopies and residues have been shown to intercept a significant amount of rainfall. However, rainfall or irrigation interception by crops and residues has often been overlooked in hydrologic modelling. Crop canopy interception is controlled by canopy density and rainfall intensity and duration. Crop residue interception is a function of crop residue type, residue density and cover, and rainfall intensity and duration. We account for these controlling factors and present a model for both interception components based on Merriam's approach. The modified Merriam model and the current modelling approaches were examined and compared with two field studies and one laboratory study. The Merriam model is shown to agree well with measurements and was implemented within the Agricultural Research Service's Root Zone Water Quality Model (RZWQM). Using this enhanced version of RZWQM, three simulation studies were performed to examine the quantitative effects of rainfall interception by corn and wheat canopies and residues on soil hydrological components. Study I consisted of 10 separate hypothetical growing seasons (1991–2000) for canopy effects and 10 separate non‐growing seasons (1991–2000) for residue effects for eastern Colorado conditions. For actual management practices in a no‐till wheat–corn–fallow cropping sequence at Akron, Colorado (study II), a continuous 10‐year RZWQM simulation was performed to examine the cumulative changes on water balance components and crop growth caused by canopy and residue rainfall interception. Finally, to examine a higher precipitation environment, a hypothetical, no‐till wheat–corn–fallow rotation scenario at Corvallis, Oregon, was simulated (study III). For all studies, interception was shown to decrease infiltration, runoff, evapotranspiration from soil, deep seepage of water and chemical transport, macropore flow, leaf area index, and crop/grain yield. Because interception decreased both infiltration and soil evapotranspiration, no significant change in soil water storage was simulated. Nonetheless, these findings and the new interception models are significant new contributions for hydrologists. Published in 2006 John Wiley & Sons, Ltd.  相似文献   

6.
7.
Sediments produced from eroding cultivated land can cause on‐site and off‐site effects that cause considerable economic and social impacts. Despite the importance of soil conservation practices (SCP) for the control of soil erosion and improvements in soil hydrological functions, limited information is available regarding the effects of SCP on sediment yield (SY) at the catchment scale. This study aimed to investigate the long‐term relationships between SY and land use, soil management, and rainfall in a small catchment. To determine the effects of anthropogenic and climatic factors on SY, rainfall, streamflow, and suspended sediment concentration were monitored at 10‐min intervals for 14 years (2002–2016), and the land use and soil management changes were surveyed annually. Using a statistical procedure to separate the SY effects of climate, land use, and soil management, we observed pronounced temporal effects of land use and soil management changes on SY. During the first 2 years (2002–2004), the land was predominantly cultivated with tobacco under a traditional tillage system (no cover crops and ploughed soil) using animal traction. In that period, the SY reached approximately 400 t·km?2·year?1. From 2005 to 2009, a soil conservation programme introduced conservation tillage and winter cover crops in the catchment area, which lowered the SY to 50 t·km?2·year?1. In the final period (2010–2016), the SCP were partially abandoned by farmers, and reforested areas increased, resulting in an SY of 150 t·km?2·year?1. This study also discusses the factors associated with the failure to continue using SCP, including structural support and farmer attitudes.  相似文献   

8.
Quantifying the relative proportions of soil losses due to interrill and rill erosion processes during erosion events is an important factor in predicting total soil losses and sediment transport and deposition. Beryllium‐7 (7Be) can provide a convenient way to trace sediment movement over short timescales providing information that can potentially be applied to longer‐term, larger‐scale erosion processes. We used simulated rainstorms to generate soil erosion from two experimental plots (5 m × 4 m; 25° slope) containing a bare, hand‐cultivated loessal soil, and measured 7Be activities to identify the erosion processes contributing to eroded material movement and/or deposition in a flat area at the foot of the slope. Based on the mass balance of 7Be detected in the eroded soil source and in the sediments, the proportions of material from interrill and rill erosion processes were estimated in the total soil losses, the deposited sediments in the flat area, and in the suspended sediments discharged from the plots. The proportion of interrill eroded material in the discharged sediment decreased over time as that of rill eroded material increased. The amount of deposited material was greatly affected by overland flow rates. The estimated amounts of rill eroded material calculated using 7Be activities were in good agreement with those based on physical measurements of total plot rill volumes. Although time lags of 45 and 11 minutes existed between detection of sediment being removed by rill erosion, based on 7Be activities, and observed rill initiation times, our results suggest that the use of 7Be tracer has the potential to accurately quantify the processes of erosion from bare, loessal cultivated slopes and of deposition in flatter, downslope areas that occur in single rainfall events. Such measurements could be applied to estimate longer‐term erosion occurring over larger areas possessing similar landforms. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The goal of this study was to improve understanding of the factors that influence runoff generation during non‐frozen ground periods in small agricultural watersheds in southwestern Wisconsin where the landscapes are controlled by dolostone bedrock in order to provide agricultural producers with a manure management tool. Six small watersheds (ranging from 6 to 17 ha) within two southwestern Wisconsin farm sites (Discovery Farms Program (DFP) and Pioneer Farm (PF)) were instrumented, and surface runoff was continuously monitored from 2004 to 2007. The soils in all watersheds were formed in deep (~1 m) loessial sites. A direct‐plant management strategy and corn‐soybean crop rotation were utilized within watersheds at DFP. A conventional tillage system (chisel plow in the fall followed by soil finisher in the spring) and a corn‐oat‐alfalfa crop rotation were utilized within watersheds at PF. At PF, the amount of precipitation leaving the landscape as surface runoff (1.8%) was two times greater compared to DFP (0.9%), indicating that the direct‐plant management system was better at retaining precipitation than the chisel plow/soil finisher system. Using breakpoint regression analysis, a non‐linear response in runoff generation with antecedent soil moisture (ASM) was observed with a threshold ASM of 0.39 cm3cm?3 (approximately 80% of total porosity) for all six watersheds. Below this threshold, runoff coefficients were near zero. Above this threshold, runoff coefficients increased with ASM. A non‐linear response in runoff generation with maximum 30 min rainfall intensity (I30) was also observed, and threshold I30 values increased as ASM decreased and as crop cover increased. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The management of reclaimed slopes derived from industrial and civil activities (e.g. surface mining and road construction) requires the development of practical stability analysis approaches that integrate the processes and mechanisms that rule the dynamics of these ubiquitous emerging ecosystems. This work describes a new modelling approach focused on stability analysis of water‐limited reclaimed slopes, where interactive relationships between rill erosion and vegetation regulate ecosystem stability. Our framework reproduces two main groups of possible trends along the temporal evolution of reclaimed slopes: successful trends, characterized by widespread vegetation development and the effective control of rill erosion processes; and gullying trends, characterized by the progressive loss of vegetation and a sharp logistic increase in erosion rates. Furthermore, this analytical approach allows the determination of threshold values for the state variables (i.e. vegetation cover and rill erosion) that drive the system's stability, facilitating the identification of critical situations that require specific human intervention (e.g. revegetation or, in very problematic cases, revegetation combined with rill network destruction) to ensure the long‐term sustainability of the restored ecosystem. The application of our threshold analysis framework in Mediterranean‐dry reclaimed slopes derived from surface coal mining (the Teruel coalfield in central‐eastern Spain) showed a good field‐based performance. Therefore, we believe that this model is a valuable contribution for the management of water‐limited reclaimed systems, including those associated with rill erosion, as it provides a tool for the evaluation of restoration success and can play an important role in decision‐making during ecosystem restoration in severely disturbed landscapes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Crop residues in conservation tillage systems are known to cause both a reduction in the erosive runoff power and an increase in the topsoil erosion resistance. In this study, the relative importance of both mechanisms in reducing soil loss by concentrated flow erosion is examined. Therefore, a method to calculate the effective flow shear stress responsible for soil detachment in the presence of a residue cover is applied. The determination of effective flow shear stress is based on the recalculation of the hydraulic radius for residue treatments. The method was tested in a laboratory flume by comparing soil detachment rates of identical pairs of soil samples that only differ in the presence or absence of crop residues. This shear stress partitioning approach and a soil detachment correction were then applied to a dataset of soil detachment measurements on undisturbed topsoil samples from a no‐till field plot on a loess‐derived soil, sampled during one growing season. Results indicate that only a small fraction (10% on average) of the difference in soil detachment rate between conventional and conservation tillage can be attributed to the dissipation of shear forces on the residues. The remaining decrease in soil detachment during concentrated runoff after a two‐year application of conservation tillage can be explained by the increased dry bulk density and root and crop residue content in the topsoil that reduces soil erodibility. After correcting for the presence of residues, the temporal variability in soil detachment rates (Dr) during concentrated flow for a given flow shear stress (τ) for both treatments can be predicted fairly well (R2 = 0·87) from dry soil bulk density (DBD, representing consolidation effects), soil moisture content (SMC, representing antecedent rainfall conditions), the dry mass of organic material (OM, representing root growth and residue decomposition) and saturated soil shear strength σs, sat using an equation of the form: This study is the first to show that the effect of conservation tillage on soil detachment rates is a result of soil property modifications affecting soil erodibility, rather than a result of the surface residue decreasing flow erosivity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Soil redistribution on arable land significantly affects lateral and vertical soil carbon (C) fluxes (caused by C formation and mineralization) and soil organic carbon (SOC) stocks. Whether this serves as a (C) sink or source to the atmosphere is a controversial issue. In this study, the SPEROS‐C model was modified to analyse erosion induced lateral and vertical soil C fluxes and their effects upon SOC stocks in a small agricultural catchment (4·2 ha). The model was applied for the period between 1950 and 2007 covering 30 years of conventional tillage (1950–1979) followed by 28 years of conservation tillage (1980–2007). In general, modelled and measured SOC stocks are in good agreement for three observed soil layers. The overall balance (1950–2007) of erosion induced lateral and vertical C fluxes results in a C loss of ?4·4 g C m–2 a–1 at our test site. Land management has a significant impact on the erosion induced C fluxes, leading to a predominance of lateral C export under conventional and of vertical C exchange between soil and atmosphere under conservation agriculture. Overall, the application of the soil conservation practices, with enhanced C inputs by cover crops and decreased erosion, significantly reduced the modelled erosion induced C loss of the test site. Increasing C inputs alone, without a reduction of erosion rates, did not result in a reduction of erosion induced C losses. Moreover, our results show that the potential erosion induced C loss is very sensitive to the representation of erosion rates (long‐term steady state versus event driven). A first estimate suggests that C losses are very sensitive to magnitude and frequency of erosion events. If long‐term averages are dominated by large magnitude events modelled erosion induced C losses in the catchment were significantly reduced. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
RUSLE2 (Revised Universal Soil Loss Equation) is the most recent in the family of Universal Soil Loss Equation (USLE)/RUSLE/RUSLE2 models proven to provide robust estimates of average annual sheet and rill erosion from a wide range of land use, soil, and climatic conditions. RUSLE2's capabilities have been expanded over earlier versions using methods of estimating time‐varying runoff and process‐based sediment transport routines so that it can estimate sediment transport/deposition/delivery on complex hillslopes. In this report we propose and evaluate a method of predicting a series of representative runoff events whose sizes, durations, and timings are estimated from information already in the RUSLE2 database. The methods were derived from analysis of 30‐year simulations using a widely accepted climate generator and runoff model and were validated against additional independent simulations not used in developing the index events, as well as against long‐term measured monthly rainfall/runoff sets. Comparison of measured and RUSLE2‐predicted monthly runoff suggested that the procedures outlined may underestimate plot‐scale runoff during periods of the year with greater than average rainfall intensity, and a modification to improve predictions was developed. In order to illustrate the potential of coupling RUSLE2 with a process‐based channel erosion model, the resulting set of representative storms was used as an input to the channel routines used in Chemicals, Runoff, and Erosion from Agricultural Management Systems (CREAMS) to calculate ephemeral gully erosion. The method was applied to a hypothetical 5‐ha field cropped to cotton in Marshall County, MS, bisected by a potential ephemeral gully having channel slopes ranging from 0·5 to 5% and with hillslopes on both sides of the channel with 5% steepness and 22·1 m length. Results showed the representative storm sequence produced reasonable results in CREAMS indicating that ephemeral gully erosion may be of the same order of magnitude as sheet and rill erosion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
IntheLoessPlateau,alongtheslopelengthfromthetoptothebottom,soilerosionischaracterizedbyobviousverticalzonaldivision,thatis,sheeterosionzone,sheeterosionandrillerosionzone,rillerosionandshallowgullyerosionzoneandgullyerosionzone.Inthesheetandrillero..sionzone,rillerosionamounttakesup70%ofthetotalsoilloss[TANGKenetal.,1983,ZHENGFenlietal.,19871;intherillandshallowgullyerosionzone,rillerosionamountaccountsfor30--40%ofthetotalsoilloss.Sorillerosionisamajorerosionpatternonsteepslopeland.Riller…  相似文献   

15.
This commentary discusses the role of long‐term climate change in driving increases in soil erosion. Assuming that land use and management remain effectively constant, we discuss changes in the ability of rainfall to cause erosion (erosivity), using long daily rainfall data sets from southeast England. An upward trend in mean rainfall per rain day is detected at the century‐plus timescale. Implications for soil erosion and sediment delivery are discussed and evidence from other regions reviewed. We conclude that rates of soil erosion may well increase in a warmer, wetter world. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
This study aimed to investigate the changing characteristics of microrelief of purple soil and its erosional response during successive stages of water erosion, including splash erosion, sheet erosion, and rill erosion. Methods employed included a rainfall simulator and the use of a laser scanner to generate a digital elevation model. Three artificial tillage practices, including conventional tillage (CT), artificial digging (AD), and ridge tillage (RT), were used to simulate different microrelief patterns. Eighteen artificial rainfall experiments were conducted using three 2 × 1 m boxes with a rainfall intensity of 1.5 mm min?1 on a 15° slope. The results showed that the soil roughness (SR) index values for the tillage slopes were RT > AD > CT. The combined effects of detachment by raindrop impact and transport by run‐off decreased the SR index, whereas rill erosion increased the SR index during rainfall event. Microtopography and drainage networks have strong multifractal behaviours. The multifractal parameters of microtopography reflect the overall characteristics as well as the characteristics of the local soil surface. Within a certain range of threshold values, higher microrelief causes less soil erosion. However, when the parameters of spatial heterogeneity of microtopography exceed the threshold values, a higher degree of microrelief can increase soil erosion. These results help clarify the effect of microtopography on soil erosion and provide a theoretical foundation to guide future tillage practices on sloping farmland of purple soil.  相似文献   

17.
Changing fire regimes and prescribed‐fire use in invasive species management on rangelands require improved understanding of fire effects on runoff and erosion from steeply sloping sagebrush‐steppe. Small (0·5 m2) and large (32·5 m2) plot rainfall simulations (85 mm h–1, 1 h) and concentrated flow methodologies were employed immediately following burning and 1 and 2 years post‐fire to investigate infiltration, runoff and erosion from interrill (rainsplash, sheetwash) and rill (concentrated flow) processes on unburned and burned areas of a steeply sloped sagebrush site on coarse‐textured soils. Soil water repellency and vegetation were assessed to infer relationships in soil and vegetation factors that influence runoff and erosion. Runoff and erosion from rainfall simulations and concentrated flow experiments increased immediately following burning. Runoff returned to near pre‐burn levels and sediment yield was greatly reduced with ground cover recovery to 40 per cent 1 year post‐fire. Erosion remained above pre‐burn levels on large rainfall simulation and concentrated flow plots until ground cover reached 60 per cent two growing seasons post‐fire. The greatest impact of the fire was the threefold reduction of ground cover. Removal of vegetation and ground cover and the influence of pre‐existing strong soil‐water repellency increased the spatial continuity of overland flow, reduced runoff and sediment filtering effects of vegetation and ground cover, and facilitated increased velocity and transport capacity of overland flow. Small plot rainfall simulations suggest ground cover recovery to 40 per cent probably protected the site from low‐return‐interval storms, large plot rainfall and concentrated flow experiments indicate the site remained susceptible to elevated erosion rates during high‐intensity or long duration events until ground cover levels reached 60 per cent. The data demonstrate that the persistence of fire effects on steeply‐sloped, sandy sagebrush sites depends on the time period required for ground cover to recover to near 60 per cent and on the strength and persistence of ‘background’ or fire‐induced soil water repellency. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

18.
The present study demonstrates a spatially distributed application of a field‐scale annual soil loss model, the modified‐MMF (MMMF), to a large watershed using hydrological routing techniques, remote sensing data and geospatial technologies. In this study, the MMMF model is implemented after incorporating the corrections suggested in recent literature along with appropriate modifications of the model to suit the agro‐climatological conditions prevailing in most parts of India. Sensitivity analysis carried out through an Average Linear Sensitivity approach indicates that the model outputs are highly sensitive to soil moisture (MS), bulk density (BD), effective hydraulic depth (EHD), ground cover (GC) and settling velocity for clay (VSc). During calibration and validation, the performance evaluation statistics are mostly in the range of very good to satisfactory for both runoff and soil loss at the watershed outlet. Even spatial validation of the results of intermediate processes in the water phase and the sediment phase, although qualitative, seems to be reasonable and rational. Furthermore, the soil erosion severity analysis for different land‐uses existing in the watershed indicates that about 90% of the watershed area, especially that occupied by agricultural lands, is vulnerable to the long‐term effects of soil erosion. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

19.
The universal soil loss equation (USLE) is the most frequently applied erosion prediction model and it is also implemented as an official decision‐making instrument for agricultural regulations. The USLE itself has been already validated using different approaches. Additional errors, however, arise from input data and interpolation procedures that become necessary for field‐specific predictions on a national scale for administrative purposes. In this study, predicted event soil loss using the official prediction system in Bavaria (Germany) was validated by comparison with aerial photo erosion classifications of 8100 fields. Values for the USLE factors were mainly taken from the official Bavarian high‐resolution (5 × 5 m2) erosion cadastre. As series of erosion events were examined, the cover and management factor was replaced by the soil loss ratio. The event erosivity factor was calculated from high‐resolution (1 × 1 km2, 5 min), rain gauge‐adjusted radar rain data (RADOLAN). Aerial photo erosion interpretation worked sufficiently well and average erosion predictions and visual classifications correlated closely. This was also true for data broken down to individual factors and different crops. There was no reason to assume a general invalidity of the USLE and the official parametrization procedures. Event predictions mainly suffered from errors in the assumed crop stage period and tillage practices, which do not reflect interannual and farm‐specific variation. In addition, the resolution of radar data (1 km2) did not seem to be sufficient to predict short‐term erosion on individual fields given the strong spatial gradients within individual rains. The quality of the input data clearly determined prediction quality. Differences between USLE predictions and observations are most likely caused by parametrization weaknesses but not by a failure of the model itself. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
Although unpaved roads are well‐recognized as important sources of Hortonian overland flow and sediment in forested areas, their role in agriculturally‐active rural settings still lacks adequate documentation. In this study, we assessed the effect of micro‐catchment size, slope, and ground cover on runoff and sediment generation from graveled roadbeds servicing a rural area in southern Brazil. Fifteen replications based on 30‐min‐long simulated rainfall experiments were performed at constant rainfall intensities of 22–58 mm h?1 on roadbeds with varying characteristics including ~3–7 m2 micro‐catchment areas, 2–11° slopes, 2–9.7‐m‐long shallow rill features, and 30–100% gravel cover. The contributions of micro‐catchment size and rill length were the most important physical characteristics affecting runoff response and sediment production; both the size of the micro‐catchment and the length of the rills were inversely related to sediment loss and this contradicts most of the rill erosion literature. The effect of micro‐catchment size on runoff and sediment response suggests a potentially problematic spatial‐scale subjectivity of experimental plot results. The inverse relationship between rill length and sediment generation is interpreted here as related to the predominance of coarse fragments within rills, the inability of the shallow flows generated during the simulations to erode this sediment, and their role as zones of net sediment storage. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号