首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two‐dimensional (2D) hydrophilic interaction liquid chromatography (HILIC) and reverse‐phase (RP) liquid chromatography (LC) system coupled with triple‐quadrupole mass spectrometry (MS) was developed to comprehensively profile ceramides and phosphatidylcholine in extracted biological samples. Briefly, the 2D HILIC‐RPLC system used a silica HILIC column operated in the first dimension to distinguish the lipid classes and a BEH C18 column operated in the second dimension to separate the lipid species of the same class. The regression linearity of each lipid was satisfactory in both systems; however, the absolute matrix effect factor was reduced in 2D LC‐MS/MS system. Limits of detection of 2D LC‐MS/MS system were 2‐ to 3‐fold lower compared with one‐dimensional RPLC‐MS/MS. The recovery from the sample ranged from 84.5 to 110%. To summarize, the developed method was proven to be accurate and producible, as relative standard deviations remained <20% at three spiked levels. The efficiency of this newly developed system was applied to measure changes of lipids in the liver of mice after naphthalene treatment. Orthogonal projection to latent structures‐discriminant analysis discriminated the lipids from control and the treatment group. We concluded that 2D LC‐MS/MS is a promising method to assist lipidomic studies of complex biological samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
A simple, sensitive, and rapid method for determination of L‐trantinterol in rat plasma was developed for the first time by using LC coupled to MS/MS based on chiral stationary phase. A baseline separation of the enantiomers of trantinterol was achieved on a Chirobiotic V column, using a mixture of acetonitrile–methanol–ammonia–acetic acid (80:20:0.01:0.02, v/v/v/v) as the mobile phase. The detection was performed on a triple‐quadrupole tandem mass spectrometer by multiple reaction monitoring mode via ESI. The calibration curve was linear in concentration range from 0.270 to 108 ng/mL in plasma with the lower limit of quantification of 0.270 ng/mL. The intra‐ and interday precision (relative standard deviation) values were within 10.9% and the accuracy (relative error) was from 2.6 to 9.2% at all quality control levels. The method has been successfully applied to a study of L‐trantinterol pharmacokinetics in rats.  相似文献   

3.
A liquid chromatography–triple quadrupole mass spectrometric (LC‐MS/MS) method was developed and validated for the determination of 5‐nitro‐5′‐hydroxy‐indirubin‐3′‐oxime (AGM‐130) in human plasma to support a microdose clinical trial. The method consisted of a liquid–liquid extraction for sample preparation and LC‐MS/MS analysis in the positive ion mode using TurboIonSprayTM for analysis. d3‐AGM‐130 was used as the internal standard. A linear regression (weighted 1/concentration) was used to fit calibration curves over the concentration range of 10–2000 pg/mL for AGM‐130. There were no endogenous interference components in the blank human plasma tested. The accuracy at the lower limit of quantitation was 96.6% with a precision (coefficient of variation, CV) of 4.4%. For quality control samples at 30, 160 and 1600 pg/mL, the between run CV was ≤5.0 %. Between‐run accuracy ranged from 98.1 to 101.0%. AGM‐130 was stable in 50% acetonitrile for 168 h at 4°C and 6 h at room temperature. AGM‐130 was also stable in human plasma at room temperature for 6 h and through three freeze–thaw cycles. The variability of selected samples for the incurred sample reanalysis was ≤12.7% when compared with the original sample concentrations. This validated LC‐MS/MS method for determination of AGM‐130 was used to support a phase 0 microdose clinical trial. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
A highly selective and sensitive liquid chromatography–tandem mass spectrometry (LC MS/MS) method was developed for the quantification of metronidazole (MTZ) in human feces. The analyte was recovered from feces after liquid–liquid extraction with ethyl acetate and separated on Waters Symmetry® C18 (100 × 4.6 mm, 5μm) column using 0.1% formic acid in water and acetonitrile (40:60, v/v) as the mobile phase. A stable‐deuterated internal standard metronidazole‐d4 (MTZ‐d4) was used in the study. Mass analysis was performed on a triple quadrupole mass spectrometer in the positive electrospray ionization mode. A linear response function of MTZ was established in the concentration range of 0.50–250 ng/g, based on dry mass. The mean extraction recovery of MTZ (97.28%) and MTZ‐d4 (96.76%) from spiked feces samples was consistent at higher as well as lower concentrations. Post‐column infusion analysis showed no ion‐suppression/enhancement effects and the mean IS‐normalized matrix factor ranged from 0.986 to 1.013. Spiked feces samples stored at −20 and − 70°C for long‐term stability were stable for at least 3 months, while extracted samples (dry and wet extracts) were stable up to 24 h. The method was applied to determine MTZ in feces of 12 healthy Indian subjects.  相似文献   

5.
A simple, sensitive, and selective liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the simultaneous quantification of olanzapine (OLZ) and its metabolite N‐desmethylolanzapine (DMO) in human plasma for therapeutic drug monitoring. Sample preparation was performed by one‐step protein precipitation with methanol. The analytes were chromatographed on a reversed‐phase YMC‐ODS‐AQ C18 Column (2.0 × 100 mm,3 µm) by a gradient program at a flow rate of 0.30 mL/min. Quantification was performed on a triple quadrupole tandem mass spectrometer via electrospray ionization in positive ion mode. The method was validated for selectivity, linearity, accuracy, precision, matrix effect, recovery and stability. The calibration curve was linear over the concentration range 0.2–120 ng/mL for OLZ and 0.5–50 ng/mL for DMO. Intra‐ and interday precisions for OLZ and DMO were <11.29%, and the accuracy ranged from 95.23 to 113.16%. The developed method was subsequently applied to therapeutic drug monitoring for psychiatric patients receiving therapy of OLZ tablets. The method seems to be suitable for therapeutic drug monitoring of patients undergoing therapy with OLZ and might contribute to prediction of the risk of adverse reactions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
A rapid, simple and validated method based on liquid chromatography coupled with tandem mass spectrometry (LC‐MS/MS) has been developed for the determination of granisetron in human plasma. Plasma samples were pre‐purified by protein precipitation procedure. The chromatographic separation was achieved with Synergi Polar‐RP (75 × 2 mm, 4 µm) column using a mixture of 5 mm pH4.0 ammonium formate and methanol (300:316, v/v) under isocratic conditions at a flow rate of 0.3 mL/min. The detection was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring mode using positive electrospray ionization. The analysis time was about 2.5 min. The method was fully validated over the concentration range 0.1–10 ng/mL. The lower limit of quantification was 0.1 ng/mL. Inter‐ and intra‐batch precision was <6.1% and the accuracy was within 95.6–100.0%. The mean extraction recovery was 96.3%. Selectivity, matrix effect and stability were also validated. The method was applied to the comparative pharmacokinetic study of granisetron in Chinese healthy subjects. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
In order to have overall chemical material information of Kai‐Xin‐San (KXS), the reliable ultra‐high‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometer (UHPLC–Q‐TOF‐MS) and ultra‐fast liquid chromatography mass spectrometer (UFLC‐MS/MS) methods were developed for the identification and determination of the major constituents in KXS. Moreover, the UHPLC–Q‐TOF‐MS method was also applied to screen for multiple absorbed components in rat plasma after oral administration of KXS. The UHPLC–Q‐TOF‐MS method was achieved on Agilent 6520 Q‐TOF mass and operated in the negative ion mode. Good separation was performed on a ZORBAX Eclipse Plus C18 column with a gradient elution at a flow rate of 0.2 ml/min. A total of 92 compounds in KXS were identified or tentatively characterized based on their exact molecular weights, fragmentation patterns, and literature data. A total of 26 compounds including 23 prototype components and three metabolites were identified in rat plasma after oral administration of KXS. Then, 16 major bioactive constituents were chosen as the benchmark substances to evaluate the quality of KXS. Their quantitative analyses were performed by a triple quadrupole tandem mass spectrometer (MS/MS) operating in multiple‐reaction monitoring mode(MRM). The analysis was completed with a gradient elution at a flow rate of 0.4 ml/min within 35 min. The simple and fast method was validated and showed good linearity, precision, and recovery. Furthermore, the method was successful applied for the determination of 16 compounds in KXS. All results would provide essential data for identification and quality control of active chemical constituents in KXS. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
A rapid, simple and sensitive LC–MS/MS method was established and validated for simultaneous quantification of ticagrelor and its active metabolite AR‐C124910XX in human plasma. After plasma samples were deproteinized with acetonitrile, the post‐treatment samples were chromatographed on a Dikma C18 column interfaced with a triple quadrupole tandem mass spectrometer. Electrospray negative ionization mode and multiple reaction monitoring were adopted to assay ticagrelor and AR‐C124910XX. Acetonitrile and 5 mΜ ammonium acetate was used as the mobile phase with a gradient elution at a flow rate of 0.5 mL/min. The method was linear in the range of 0.781–800 ng/mL for both ticagrelor and AR‐C124910XX with a correlation coefficient ≥0.994. The intra‐ and inter‐day precisions were within 12.61% in terms of relative standard deviation and the accuracy was within ±7.88% in terms of relative error. The LC–MS/MS method was fully validated for its sensitivity, selectivity, stability, matrix effect and recovery. This convenient and specific LC–MS/MS method was successfully applied to the pharmacokinetic study of ticagrelor and AR‐C124910XX in healthy volunteers after an oral dose of 90 mg ticagrelor.  相似文献   

9.
Rapid, simple and reliable HPLC/UV and LC‐ESI‐MS/MS methods for the simultaneous determination of five active coumarins of Angelicae dahuricae Radix, byakangelicol (1), oxypeucedanin (2), imperatorin (3), phellopterin (4) and isoimperatorin (5) were developed and validated. The separation condition for HPLC/UV was optimized using a Develosil RPAQUEOUS C30 column using 70% acetonitrile in water as the mobile phase. This HPLC/UV method was successful for providing the baseline separation of the five coumarins with no interfering peaks detected in the 70% ethanol extract of Angelicae dahuricae Radix. The specific determination of the five coumarins was also accomplished by a triple quadrupole tandem mass spectrometer equipped with an electrospray ionization source (LC‐ESI‐MS/MS). Multiple reaction monitoring (MRM) in the positive mode was used to enhance the selectivity of detection. The LC‐ESI‐MS/MS methods were successfully applied for the determination of the five major coumarins in Angelicae dahuricae Radix. These HPLC/UV and LC‐ESI‐MS/MS methods were validated in terms of recovery, linearity, accuracy and precision (intra‐ and inter‐day validation). Taken together, the shorter analysis time involved makes these HPLC/UV and LC‐ESI‐MS/MS methods valuable for the commercial quality control of Angelicae dahuricae Radix extracts and its pharmaceutical preparations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A selective and sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed for the simultaneous quantitative determination of 1,5‐dicaffeoylquinic acid (1,5‐DCQA) and 1‐O‐ acetylbritannilactone (1‐O‐ ABL) in rat plasma. Chromatographic separation was performed on a Zorbax Eclipse XDB‐C18 column using isocratic mobile phase consisting of methanol–water–formic acid (70:30:0.1, v /v/v) at a flow rate of 0.25 mL/min. The detection was achieved using a triple‐quadrupole tandem MS in selected reaction monitoring mode. The calibration curves of all analytes in plasma showed good linearity over the concentration ranges of 0.850–213 ng/mL for 1,5‐DCQA, and 0.520–130 ng/mL for 1‐O‐ ABL, respectively. The extraction recoveries were ≥78.5%, and the matrix effect ranged from 91.4 to 102.7% in all the plasma samples. The method was successfully applied for the pharmacokinetic study of the two active components in the collected plasma following oral administration of Inula britannica extract in rats.  相似文献   

11.
A rapid dispersive micro‐solid phase extraction (D‐μ‐SPE) combined with LC/MS/MS method was developed and validated for the determination of ketoconazole and voriconazole in human urine and plasma samples. Synthesized mesoporous silica MCM‐41 was used as sorbent in d ‐μ‐SPE of the azole compounds from biological fluids. Important D‐μ‐SPE parameters, namely type desorption solvent, extraction time, sample pH, salt addition, desorption time, amount of sorbent and sample volume were optimized. Liquid chromatographic separations were carried out on a Zorbax SB‐C18 column (2.1 × 100 mm, 3.5 μm), using a mobile phase of acetonitrile–0.05% formic acid in 5 mm ammonium acetate buffer (70:30, v /v). A triple quadrupole mass spectrometer with positive ionization mode was used for the determination of target analytes. Under the optimized conditions, the calibration curves showed good linearity in the range of 0.1–10,000 μg/L with satisfactory limit of detection (≤0.06 μg/L) and limit of quantitation (≤0.3 μg/L). The proposed method also showed acceptable intra‐ and inter‐day precisions for ketoconazole and voriconazole from urine and human plasma with RSD ≤16.5% and good relative recoveries in the range 84.3–114.8%. The MCM‐41‐D‐μ‐SPE method proved to be rapid and simple and requires a small volume of organic solvent (200 μL); thus it is advantageous for routine drug analysis.  相似文献   

12.
A simple, specific and sensitive LC‐MS/MS method was developed and validated for the simultaneous determination of metoprolol (MET), α‐hydroxymetoprolol (HMT) and O‐desmethylmetoprolol (DMT) in rat plasma. The plasma samples were prepared by protein precipitation, then the separation of the analytes was performed on an Agilent HC‐C18 column (4.6 × 250 mm, 5 µm) at a flow rate of 1.0 mL/min, and post‐column splitting (1:4) was used to give optimal interface flow rates (0.2 mL/min) for MS detection; the total run time was 8.5 min. Mass spectrometric detection was achieved using a triple‐quadrupole mass spectrometer equipped with an electrospray source interface in positive ionization mode. The method was fully validated in terms of selectivity, linearity, accuracy, precision, stability, matrix effect and recovery over a concentration range of 3.42–7000 ng/mL for MET, 2.05‐4200 ng/mL for HMT and 1.95‐4000 ng/mL for DMT. The analytical method was successfully applied to herb–drug interaction study of MET and breviscapine after administration of breviscapine (12.5 mg/kg) and MET (40 mg/kg). The results suggested that breviscapine have negligible effect on pharmacokinetics of MET in rats; the information may be beneficial for the application of breviscapine in combination with MET in clinical therapy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
This study describes application of liquid chromatography coupled with triple quadrupole mass spectrometry (LC‐MS) for evaluation of vitamin C stability, the objective being prediction of the degradation products. Detection was performed with an UV detector (UV‐Vis) in sequence with a triple‐quad mass spectrometer in the multiple reaction mode. The negative ion mode of ESI and MS‐MRM transitions of m/z 175→115 (quantifier) and 175→89 (qualifier) for ascorbic acid was used. All the validation parameters were within the range of acceptance proposed by the Food and Drug Administration. The method was fully validated in terms of linearity, LOD, LOQ, accuracy, and interday precision. Validation experiments revealed good linearity with R2 = 0.999 within the established concentration range, and excellent repeatability (9.3%). The LOD of the method was 0.1524 ng/mL whereas the LOQ was 0.4679 ng/mL. LC‐MS methodology proves to be an improved, simple, and fast approach to determining the content of vitamin C and its degradation products with high sensitivity, selectivity, and resolving power within 6 minutes of analysis.  相似文献   

14.
Flunitrazepam (FNZ) is a potent hypnotic, sedative, and amnestic drug used to treat severe insomnia. In our recent study, FNZ metabolic profiles were investigated carefully. Six authentic human urine samples were purified using solid phase extraction (SPE) without enzymatic hydrolysis, and urine extracts were then analyzed by liquid chromatography‐Q exactive‐HF hybrid quadrupole‐Orbitrap‐mass spectrometry (LC‐QE‐HF‐MS), using the full scan positive ion mode and targeted MS/MS (ddms2) technique to make accurate mass measurements. There were 25 metabolites, including 13 phase I and 12 phase II metabolites, which were detected and tentatively identified by LC‐QE‐HF‐MS. In addition, nine previously unreported phase II glucuronide conjugates and four phase I metabolites are reported here for the first time. Eight metabolic pathways, including N‐reduction and O‐reduction, N‐glucuronidation, O‐glucuronidation, mono‐hydroxylation and di‐hydroxylation, demethylation, acetylation, and combinations, were implicated in this work, and 2‐O‐reduction together with dihydroxylation were two novel metabolic pathways for FNZ that were identified tentatively. Although 7‐amino FNZ is widely considered to be the primary metabolite, a previously unreported metabolites (M12) can also serve as a potential biomarker for FNZ misuse.  相似文献   

15.
Complanatoside A is a flavonol glycoside isolated from Astragalus complanatus, and currently it is used as a quality control index for A. complanatus in the 2010 edition of the Chinese Pharmacopoeia. For the first time, a simple and sensitive LC‐MS/MS method was developed for the determination of complanatoside A in rat plasma over the range of 2.3–575 ng/mL. Complanatoside A was extracted from plasma by a protein precipitation procedure, separated by LC and detected by MS/MS in positive electrospray ionization mode. The method was validated for selectivity, carryover, sensitivity, linearity, extraction recovery, matrix effect, accuracy, precision and stability studies. The lower limit of quantification was established at 2.3 ng/mL. Intra‐ and inter‐day precisions (LLOQ, low‐QC, med‐QC and high‐QC) were <7.9%, and accuracies were between 94.0 and 105.1%. Matrix effect was acceptable (97.9–103.0%) and extraction recovery was reproducible (88.5–94.4%). Complanatoside A was stable in the investigated conditions. The method was applied to the pharmacokinetics of complanatoside A in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Tomato (Lycopersicon esculentum Mill.) is the second most important fruit crop worldwide. Tomatoes are a key component in the Mediterranean diet, which is strongly associated with a reduced risk of chronic degenerative diseases. In this work, we use a combination of mass spectrometry (MS) techniques with negative ion detection, liquid chromatography/electrospray ionization linear ion trap quadrupole‐Orbitrap‐mass spectrometry (LC/ESI‐LTQ‐Orbitrap‐MS) and liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI‐MS/MS) on a triple quadrupole, for the identification of the constituents of tomato samples. First, we tested for the presence of polyphenolic compounds through generic MS/MS experiments such as neutral loss and precursor ion scans on the triple quadrupole system. Confirmation of the compounds previously identified was accomplished by injection into the high‐resolution system (LTQ‐Orbitrap) using accurate mass measurements in MS, MS2 and MS3 modes. In this way, 38 compounds were identified in tomato samples with very good mass accuracy (<2 mDa), three of them, as far as we know, not previously reported in tomato samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The DNA methyltransferase inhibitor 5‐azacytidine is being evaluated clinically as an oral formulation to treat various solid tumors. A sensitive, reliable method was developed to quantitate 5‐azacytidine using LC‐MS/MS to perform detailed pharmacokinetic studies. The drug of interest was extracted from plasma using Oasis MCX ion exchange solid‐phase extraction 96‐well plates. Chromatographic separation was achieved with a YMC J'sphere M80 C18 column and isocratic elution with a methanol–water–formic acid (15:85:0.1, v/v/v) mobile phase over a 7 min total analytical run time. An AB Sciex 5500 triple quadrupole mass spectrometer operated in positive electrospray ionization mode was used for the detection of 5‐azacytidine. The assay range was 5–500 ng/mL and proved to be accurate (97.8–109.1%) and precise (CV ≤ 9.8%). Tetrahydrouridine was used to stabilize 5‐azacytidine in blood/plasma samples. With the addition of tetrahydrouridine, long‐term frozen plasma stability for 5‐azacytidine at ?70°C has been determined for at least 323 days. The method was applied for the measurement of total plasma concentrations of 5‐azacytidine in a cancer patient receiving a 300 mg oral daily dose. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A simple, rapid and sensitive liquid chromatography with tandem mass spectrometry (LC‐MS/MS) method for the determination of periplocymarin in biological samples was developed and successfully applied to the pharmacokinetic and tissue distribution study of periplocymarin after oral administration of periplocin. Biological samples were processed with ethyl acetate by liquid–liquid extraction, and diazepam was used as the internal standard. Periplocymarin was analyzed on a C18 column with isocratic eluted mobile phase composed of methanol and water (containing 0.1% formic acid) at a flow rate of 0.2 mL/min (73:27, v/v). Detection was performed on a triple‐quadrupole tandem mass spectrometer using positive‐ion mode electrospray ionization in the selected reaction monitoring mode. The MS/MS ion transitions monitored were m/z 535.3→355.1 and 285.1→193.0 for periplocymarin and diazepam, respectively. Good linearity was observed over the concentration ranges. The lower limit of quantification was 0.5 ng/mL in plasma and tested tissues. The intra‐and inter‐day precisions (relative standard deviation) were <10.2 and 10.5%, respectively, and accuracies (relative error) were between ?6.8 and 8.9%. Recoveries in plasma and tissue were >90%. The validated method was successfully applied to the pharmacokinetic and tissue distribution studies of periplocymarin in rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
A sensitive and selective liquid chromatography–tandem mass spectrometric (LC‐MS/MS) method was developed and validated for the determination of β,β‐dimethylacrylshikonin (DASK) in rat whole blood. DASK was pretreated using pre‐column derivatization with 2‐mercaptoethanol followed by liquid–liquid extraction with cyclohexane. Detection was performed on Thermo Finnigan TSQ Quantum triple quadrupole mass spectrometer by selected reaction monitoring mode via electrospray ionization source. The linear range for the determination of DASK spiked in rat whole blood (0.25 mL) was 3–3000 ng/mL. The accuracy was within 9%. Intra‐ and inter‐day precisions were no more than 16.1 and 13.3%, respectively. The validated LC‐MS/MS method was successfully applied to the preliminary pharmacokinetic study in rats. After DASK administration (60 mg/kg, p.o.) in rats, pharmacokinetic parameters were obtained, where the area under the drug concentration–time curve was 2393.7 ± 224.4 ng h/mL and the elimination half‐life was 27.6 ± 5.3 h. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
A rapid, specific and high‐throughput stable isotope‐dilution LC–MS/MS method was developed and validated with high sensitivity for the quantification of R‐ phencynonate (a eutomer of phencynonate racemate) in rat and dog plasma. Plasma samples were deproteinized using acetonitrile and then separated on a C8 column with an isocratic mobile phase containing acetonitrile–water–formic acid mixture (60:40:0.1, v /v/v) at a flow rate of 0.2 mL/min. Each sample had a total run time of 3 min. Quantification was performed using triple quadrupole mass spectrometry in selected reaction monitoring mode with positive electrospray ionization. The method was shown to be highly linear (r 2 > 0.99) and to have a wide dynamic range (0.1–100 ng/mL) with favourable accuracy and precision. No matrix effects were observed. The detailed pharmacokinetic profiles of R‐ phencynonate at therapeutic doses in rats and dogs were characterized by rapid oral absorption, quick clearance, high volume of distribution and poor absolute bioavailability. R‐ Phencynonate lacked dose proportionality over the oral dose range, based on the power model. However, the area under concentration–time curve and the maximum plasma concentration increased linearly in a dose‐dependent manner in both animal models. The absolute bioavailability of R‐ phencynonate was 16.6 ± 2.75 and 4.78 ± 1.26% in dogs and rats, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号