首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Additive manufacturing via direct ink writing and microwave dielectric characterisation of commercially produced low sintering temperature bismuth molybdenum oxide ceramics, have been both performed for the first time, following a powder-to-product holistic approach. We demonstrated that direct ink writing is an excellent candidate for producing dielectric substrates to be used for wireless telecommunication applications operating at microwave (MW) frequencies, with great repeatability and properties comparable to ceramics fabricated via conventional processing routes. The optimum density (relative density of ρr ≈ 93%) of the 3D printed test samples was obtained by sintering at 660 °C for 2 h, resulting in a relative permittivity εr = 35.7, dielectric loss tanδ = 0.0004 and microwave quality factor Q × f = 14,928 GHz. Sintering at higher temperatures promoted a porosity increase due to mismatching grain growth mechanisms and phase decomposition, that collectively hindered the test samples’ microwave dielectric performance in terms of achievable relative permittivity (εr) and dielectric loss (tanδ).  相似文献   

2.
(Mg1 − xCax)2SiO4 dense ceramics (x ≥ 0.15) were prepared, and their microwave dielectric characteristics were investigated together with the structure evolution. The sintering temperature for Mg2SiO4 ceramics was reduced significantly with Ca2+substitution. (Mg1 − xCax)2SiO4 ceramics exhibited a small increase in dielectric constant (εr) correlated with increased crystallite size, and ultra-high quality factor Qf value was achieved throughout the compositional range. Temperature coefficient of resonant frequency (τf) was considerably tuned from −70 ppm/°C to −33 ppm/°C, and this improvement was deeply linked with the decreased bond valance. At x = 0.075, (Mg1 − xCax)2SiO4 ceramics exhibited the best combination of microwave dielectric characteristics: ε= 7.2, Qf = 199,800 GHz at 26 GHz, τ= −33 ppm/°C. The present ceramics could be expected as promising candidate of dielectric materials for millimeter wave applications.  相似文献   

3.
ZTM ceramics comprising of 0.75ZnAl2O4–0.25TiO2 and MgTiO3 at a ratio of 90:10 wt.% are widely used in the field of communication as filters and resonators owing to their excellent microwave dielectric properties. However, the development of such dielectrics with complex structures, as required by microwave devices, is difficult using traditional fabrication methods. In this study, ZTM microwave dielectric ceramics were prepared using the digital light processing (DLP) technology. The influence of the sintering temperature on the phase composition, microstructure, and microwave dielectric properties of ZTM ceramics was investigated. Results showed that with an increase in the sintering temperature, the dielectric constant (εr) and quality factor (Q × f) of ZTM ceramics initially increased owing to the increase in the density and diffusion of ions. However, when the sintering temperature was excessively high, the abnormal growth of crystal grains and micropores led to a decrease in εr and Q × f. The ZTM ceramics sintered at 1450°C exhibited the optimum microwave dielectric properties (εr = 12.99, Q × f = 69 245 GHz, τf = −9.50 ppm/°C) owing to the uniform microstructure and a high relative density of 95.02%. These results indicate that DLP is a promising method for preparing high-performance microwave dielectric ceramics with complex structures.  相似文献   

4.
《Ceramics International》2020,46(11):19015-19021
Ba0.67Sr0.33TiO3 (BST) ceramics with highly improved dielectric performance were fabricated by a novel direct coagulation casting via high valence counter ions (DCC-HVCI) method. The influence of solid loading on densification behavior, micromorphology, and dielectric performance of the samples was investigated. With the increase of solid loading from 40 to 50 vol%, the maximum densification rate of BST ceramics increased from 0.090 to 0.122 s−1, and the densification temperature decreased from 1424 to 1343 °C, which indicated that high solid loading could promote the densification behavior of samples during sintering. BST ceramics fabricated by the DCC-HVCI method showed uniform grain size and microstructure, which was beneficial for the dielectric properties of BST ceramics. Samples obtained from 45 vol% suspensions possessed the lowest dielectric permittivity (εr ≈ 2801), and the dielectric loss (tanδ≈0.0262) was about 1/10 of that of dry-pressed samples (tanδ≈0.301), which could be attributed to the composition homogenization.  相似文献   

5.
Spinel ZnGa2O4 ceramics were synthesized by conventional solid‐state method and their microwave dielectric properties were investigated. The phase evolution and microstructures of specimens were studied by XRD and SEM. The textured surface microstructures of ZnGa2O4 ceramics formed at high sintering temperatures. The spinel‐structured ZnGa2O4 ceramics sintered at 1385°C exhibited excellent microwave dielectric properties: a dielectric constant (εr) of 10.4, a quality factor (× f) of 94.600 GHz, and a temperature coefficient of resonant frequency (τf) of ?27 ppm/°C. ZnGa2O4 ceramics have a low sintering temperature, a wide temperature region, and a small negative τf value. They are promising candidate materials for millimeter‐wave devices.  相似文献   

6.
《Ceramics International》2020,46(12):19996-20003
Olivine−type structure microwave dielectric ceramics LiYbSiO4 with near-zero τf were fabricated by solid-state reaction process for the first time. The relationships among structural parameters, sintering behavior, vibrational modes and microwave dielectric properties for the ceramics were studied. The variation in εr could be correlated with Raman shift. The variation in Q×f values was inversely correlated to FWMH and average cation covalency. The τf values were explained with the bond valence sum of cations. Single phase LiYbSiO4 ceramics could be obtained at the range of 1100–1140 °C and showed promising microwave dielectric properties with εr = 7.36 – 7.42, Q×f = 19081 – 25276 GHz and τf = +4.52 – +8.03 ppm/°C.  相似文献   

7.
Y2/3Cu3Ti4O12 (YCTO) ceramics were successfully synthesized by sol–gel method (SG) and solid‐state method (SS), respectively. The optimized processing parameters for the syntheses of precursor powders by sol–gel process were determined as follows: the Ti(OC4H9)4 concentration was 0.50 mol/L, the CH3COOH volume was 8 mL, and the volume percentage of H2O was 11.2%. Particularly, on the basis of XRD and TG‐DSC analyses, the phase formation temperature of YCTO‐SG was at least 100°C lower than that of YCTO‐SS. YCTO‐SG ceramics sintered at 1060°C for 25 h showed fine‐grained microstructure, and higher dielectric constant (ε ≈ 5.24 × 104) at 1 kHz compared to YCTO‐SS ceramics (ε ≈ 0.93 × 104). The higher dielectric constant of the YCTO‐SG ceramics was attributed to the grain size effect. Furthermore, the YCTO‐SG ceramics showed a distinct high‐temperature (>300°C) relaxor‐like behavior. According to the calculated activation energy value, the single ionization of oxygen vacancies was responsible for the conduction and dielectric anomaly behaviors of YCTO‐SG ceramics.  相似文献   

8.
It is difficult to get pure-phase Mg3B2O6 (abbreviated as MBO) ceramics by the traditional high-temperature solid-state reaction method. In this paper, pure-phase MBO ceramics were successfully densified and obtained by combining the cold sintering and post-annealing process. The relative density of MBO ceramics was ∼80% cold sintered at 150°C/90 min/800 MPa, which was further improved to ∼91% by post-annealing at 900°C, 400°C lower than that of the traditional high-temperature sintering process (∼1300°C). X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and Raman results demonstrated that the secondary phase of MgO was effectively eliminated, and dense microstructure was observed by the cold-sintering process plus post-annealing treatment. Finally, the microwave dielectric properties of MBO were evaluated with εr: 5.15–6.37, Q×f: 5942–16 686 GHz, τf: −48.45–69.72 ppm/°C.  相似文献   

9.
With the development of 5G/6G communication, the requirements of portable devices for miniaturization and multifunction make low-temperature co-fired ceramic (LTCC) more and more important. In the area of high-frequency high-density passive integration, microwave dielectric ceramics with a low dielectric loss and high thermal conductivity are urgently needed to ensure the effective signals transmission and system reliability. However, most microwave dielectric ceramics with a low dielectric loss were not applicable for the LTCC technology due to the high sintering temperature. In this work, a series of MgO-based ceramics [(100 − x) wt.% MgO–x wt.% (0.2SrF2–0.8LiF) (x = 5,7,10)] were prepared by solid-state reaction method. The addition of sintering aid 0.2SrF2–0.8LiF (S2L8) decreased the sintering temperature below 880°C without degrading the microwave dielectric properties of ceramics. Microwave dielectric properties of ceramics, including quality factor Q × f, relative permittivity εr, and temperature coefficient of resonant frequency τf, were investigated to find the optimum composition and sintering temperature. In general, MgO–7 wt.% S2L8 ceramic sintered at 860°C exhibits outstanding properties of Q × f = 180 233 GHz, εr = 9.11, τf = −40.33 ppm/°C, and a high thermal conductivity of 24.02 W/(m K). This series of ceramics are suitable to be co-fired with Ag electrodes. With all those great properties, this series of MgO-based ceramics are expected to be the candidates for LTCC applications in 5G/6G technology.  相似文献   

10.
We report a series of ReVO4 (Re = La, Ce) microwave dielectric ceramics fabricated by a standard solid‐state reaction method. X‐ray diffraction and scanning electron microscopy measurements were performed to explore the phase purity, sintering behavior, and microstructure. The analysis revealed that pure and dense monoclinic LaVO4 ceramics with a monazite structure and tetragonal CeVO4 ceramics with a zircon structure could be obtained in their respective sintering temperature range. Furthermore, LaVO4 and CeVO4 ceramics sintered at 850°C and 950°C for 4 h possessed out‐bound microwave dielectric properties: εr = 14.2, Q × f = 48197 GHz, τf = ?37.9 ppm/°C, and εr = 12.3, Q × f = 41 460 GHz, τf = ?34.4 ppm/°C, respectively. The overall results suggest that the ReVO4 ceramics could be promising materials for low‐temperature‐cofired ceramic technology.  相似文献   

11.
Precise knowledge of microwave properties of LTCC materials is crucial for efficient design of microwave systems, especially for design of communication filters. In this paper relative permittivity εr and loss tangent tanδ of a variety of LTCC ceramics manufactured by Heraeus Circuit Materials Division are presented for frequencies of 3.3 and 5.5 GHz at room temperature and also for temperatures varying from −33 °C to 22 °C at a frequency of 3.3 GHz. The measurement system for microwave characterisation of LTCC materials was based on the split post dielectric resonator and the Transmission Mode Q-factor techniques with random uncertainty in εr and in tanδ better than 0.5 and 2.6% respectively.  相似文献   

12.
A total of 14 fluoride composite ceramics were prepared through solid-state method and their microwave dielectric properties were investigated. Among the fluoride composite ceramics, 0.36LiF–0.39MgF2–0.25SrF2 (LMS) had the lowest sintering temperature (600°C) and presented a dielectric constant (εr) of 6.24 ± 0.05, a quality factor (Q × f) of 33 274 ± 900 GHz, and a temperature coefficient resonant frequency (τf) of −86.74 ± 8 ppm/°C. As the LMS ceramic had a low melting point (646°C), it can be used as sintering aid for LTCC applications. The sintering temperature of BaCuSi2O6 decreased from 1050°C to 875°C with 2 wt% LMS doped and excellent microwave dielectric properties of εr = 8.16 ± 0.04, Q × f = 24 351 ± 300 GHz, and τf = −9.74 ± 1 ppm/°C were obtained. Moreover, BaCuSi2O6-2 wt% LMS can be co-fired with Ag powders, which makes it a potential new candidate for LTCC applications.  相似文献   

13.
《Ceramics International》2015,41(7):8501-8510
CdCu3Ti4O12 ceramics were successfully synthetized by the conventional solid-state reaction method. The influences of sintering parameters on phase structure, microstructure and dielectric properties were investigated systematically. CdCu3Ti4O12 ceramics sintered at 1020 °C for 15 h exhibited high temperature stability and outstanding dielectric properties, evidenced by the △CT/C25 °C ranges from −14.8% to 12.1% measured from −55 to 125 °C at 1 kHz, and the giant dielectric constant ε′=2.4×104 as well as dielectric loss tanδ=0.072. Four dielectric anomalies were evidenced in dielectric temperature spectra and the related physical mechanisms were discussed in detail. The oxygen vacancies play an important role in dielectric anomalies in the high temperature range.  相似文献   

14.
《Ceramics International》2022,48(14):20251-20259
In this study, it is reported that various properties can be selectively derived in a pure (K0.5Na0.5)NbO3, KNN ceramics through optimizing the sintering temperature by the conventional sintering method. High piezoelectric, ferroelectric, and dielectric properties such as d33 = 127 pC/N, Pr = 31 μC/cm2, and εr = 767 are obtained at the sintering temperature of 1100 °C. On the contrary, the specimen sintered at 1130 °C does not show high piezoelectric and ferroelectric properties, but it is translucent with a transmittance of 22% and 57% at the wavelength of 800 and 1600 nm respectively and shows a very high dielectric constant εr of 881. The origin of the high piezoelectric constant owes to large remanent polarization and dielectric constant, and dense microstructure with uniform distribution of large grains with the conjunction of relatively large crystal anisotropy. On the other hand, dense microstructure with almost no porosity, highly compacted grain boundaries, uniform distribution of grains, and relatively low crystalline anisotropy are responsible for the translucency and large dielectric constant of the ceramic specimens. This study demonstrates that the lead-free KNN ceramic has the potential to show multiple noteworthy properties such as piezoelectric, ferroelectric, dielectric, and transparent properties. This work provides a pure KNN ceramic simultaneously with high piezoelectric and transparent characteristics prepared only by using the conventional sintering method at a moderate sintering temperature for the first time in the literature.  相似文献   

15.
Phase composition, morphology, and microwave dielectric properties of (1−x) LiAl0.98(Zn0.5Si0.5)0.02O2 + x CaTiO3 (0.05 ≤ x ≤ 0.20) materials synthesized via the solid state reaction method were investigated. All these densified materials were obtained at a sintering temperature of 1150°C. All compositions showed a major LiAlO2 phase that was accompanied by a minor CaTiO3 phase. The εr value increased gradually from 10.88 to 11.60, whereas the Q × f value remarkably decreased from 33 251 GHz to 13 511 GHz. The τf value changes from −85 ppm/°C to 212 ppm/°C, thereby indicating that CaTiO3 could effectively adjust this value. HBO3-doping was used to further decrease the sintering temperature to 900°C. The optimum value was obtained at 7 wt.% HBO3 doped with microwave dielectric properties of εr = 9.39, × f = 10 224 GHz, and τf = −7.8 ppm/°C. This material also exhibited chemical compatibility with silver, making it a candidate for low temperature co-fired ceramics applications.  相似文献   

16.
Due to the boom of the electronic information industry, dielectric ceramic materials are widely applied in passive components such as multilayer ceramic capacitors. In this article, Y2/3Cu3Ti4O12–TiO2 composite ceramics with outstanding dielectric properties (εr = 2.29 × 106 at 20 Hz, εr = 4.49×105 at 1 kHz) were successfully prepared by hydrothermal and in situ solid-state methods. The minimum dielectric loss value (at 1 kHz) of the obtained composite ceramics is about 0.57. The experimental results show that Y2/3Cu3Ti4O12 has a composite perovskite structure with cation vacancies, which causes internal electron-pinned defect-dipole, and the easy entry of excessive titanium ions to produce donor defects. Meanwhile, the heterogeneous grains with a pomegranate-like microstructure were observed in the prepared composite ceramics, and interfacial polarization between subgrain boundaries was substantiated by impedance analysis. The abundant weakly trapped electrons and more polarized interfaces formed by grain and subgrain boundaries are the primary sources of the excellent dielectric properties of composite ceramics.  相似文献   

17.
MSO4 (M = Ca, Sr, Ba) ceramics with relative densities exceeding 96% were prepared by solid-state sintering at low sintering temperatures of 625–875°C, and their structures and microwave dielectric properties at 10–19 GHz were characterized. MSO4 ceramics crystallized in orthorhombic symmetry with the space groups of Amma for CaSO4 and Pnma for SrSO4 and BaSO4. The optimal microwave dielectric properties were obtained with εr = 5.85, Qf = 57 000 GHz, τf,W = −98.8 ppm/°C for CaSO4, εr = 10.95, Qf = 15 500 GHz, τf,W = 101.6 ppm/°C for SrSO4, and εr = 9.42, Qf = 38 200 GHz, τf,W = −4.7 ppm/°C for BaSO4. The increased εr and τf,W while decreased Qf value in the order of CaSO4, BaSO4, and SrSO4 were attributed to the enhanced rattling effect of M2+. Besides, the temperature dependence of τf was weak for CaSO4 and BaSO4, whereas much stronger for SrSO4. As most low-εr microwave dielectric ceramics are of large negative τf, the near-zero τf of BaSO4 and positive τf of SrSO4 are rare, indicating they are potential candidates for millimeter-wave communication as a temperature-stable dielectric ceramic and a compensator for tuning negative τf to near-zero, respectively.  相似文献   

18.
Microwave dielectric properties of corundum-structured Mg4Ta2O9 ceramics were investigated as a function of sintering temperatures by an aqueous sol–gel process. Crystal structure and microstructure were examined by X-ray diffraction (XRD) technique and field emission scanning electron microscopy (FE-SEM). Sintering characteristics and microwave dielectric properties of Mg4Ta2O9 ceramics were studied as a function of sintering temperature from 1250 °C to 1450 °C. With increasing sintering temperature, the density, εr and Qf values increased, saturating at 1300 °C with excellent microwave properties of εr=11.9, Qf=195,000 GHz and τf=?47 ppm/°C. Evaluation of dielectric properties of Mg4Ta2O9 ceramics were also analyzed by means of first principle calculation method and ionic polarizability theory.  相似文献   

19.
Low-temperature-fired microwave ceramics are key to realizing the integration and miniaturization of microwave devices. In this study, a facile wet chemical method was applied to synthesize homogenous nano-sized CaF2 powders for simultaneously achieving low-temperature sintering and superior microwave dielectric properties. Pure CaF2 ceramics sintered at 950 °C for 6 h with good microwave dielectric properties (εr = 6.22, Q×f = 36,655 GHz, and τf = ?102 ppm/°C) was achieved. The microwave dielectric properties of the CaF2 ceramics were further improved by introducing LiF as a sintering aid. The sintering temperature of CaF2-based ceramics was effectively lowered from 950 °C to 750 °C with 10 wt% LiF doping, and excellent microwave dielectric properties (εr = 6.37, Q×f = 65,455 GHz, and τf = ?71 ppm/°C) were obtained.  相似文献   

20.
The relationship among the sintering behavior, crystal structure, chemical bonding properties, and dielectric properties of wolframite-type ZnZr(Nb1−xTax)2O8 (0.0 ≤ x ≤ 1.0) ceramics was investigated with the progressive replacement of Nb5+ by Ta5+. The optimum sintering temperature increases from 1225 to 1375°C with increasing Ta5+ content. The εr value falls from 27.34 to 22.34 due to a gradual decrease in bond ionicity and a shift in the Raman vibration modes toward higher wave numbers. The Q × f increases from 63 604 GHz (@6.71 GHz) to 115 631 GHz (@7.89 GHz), which is since the increase in the total lattice of chemical bonds. Moreover, the reduction in grain boundary area and the gradual lowering of the full width at half maximum of the Raman vibration modes contribute to the reduction in dielectric losses. First-principles calculations illustrate that the growth in bandgap and electron cloud density in the internal space of the [Zn/ZrO6] octahedron leads to a reduction in dielectric loss. Furthermore, the reduced degree of oxygen octahedral distortion causes a change in τf from −46.56 to −37.40 ppm/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号