首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
考虑了闸片形状对制动盘摩擦面上热流密度分布的影响,利用微元法计算热输入模型,将辐射换热系数折算成等效对流换热系数,建立了高速列车制动盘的有限元分析模型,并利用ANSYS对制动盘制动过程中温度场的分布进行了仿真分析。  相似文献   

2.
高速列车制动盘瞬态温度和热应力分布仿真分析   总被引:5,自引:4,他引:5  
制动盘的热疲劳损伤是当前列车安全制动的主要威胁。制动过程中的瞬态温度和热应力分布是热疲劳损伤研究的基础。通过建立制动盘无内热源的三维温度场分布的数学计算模型,采用热弹塑性有限元法,利用摩擦功率法计算温度场载荷,仿真不同制动工况下制动盘摩擦热负荷产生的温度场以及热应力分布。主要计算一次常用制动、一次紧急制动、三次紧急制动和一次坡道制动这4种制动工况。通过仿真分析发现,不同工况下制动盘面的温度变化有着相似的规律。制动开始阶段,随着强热流的不断输入,盘面在很短时间内迅速升温,很快达到峰值点。随后,盘体逐渐通过辐射和对流的方式散热,温度缓慢下降。相对紧急制动和常用制动的升温过程,坡道制动的升温显得缓慢一些。研究不同工况下制动盘温度和热应力的变化和分布规律,为高速列车复合材料制动盘的热疲劳性能评价提供依据。  相似文献   

3.
运用ANSYS建立高速列车制动盘有限元模型,基于移动热源法对不同结构参数制动盘进行温度场仿真,对比分析散热筋形状、直径、疏密和制动盘盘体厚度对制动盘温度场的影响规律。结果表明:制动过程中,制动盘温度呈现先快速上升后缓慢下降的趋势,最高温度位于制动盘表面摩擦接触区域;采用长方柱状散热筋相比圆柱状能降低制动盘最高温度5.3%;制动盘最高温度与散热筋直径呈接近线性关系,与盘体厚度呈近似抛物线关系;增加摩擦接触区域对应的散热筋数量可以降低制动盘最高温度。最后基于仿真结果进行回归分析,拟合出制动盘最高温度函数模型,为制动盘优化设计提供了依据。  相似文献   

4.
通风式制动盘的散热特性对提高列车的制动性能至关重要,筋板结构是影响通风式制动盘散热特性的关键因素。本文考虑了紧急制动工况,采用计算流体力学分析方法(Computational fluid dynamics,CFD)分析了不同筋板结构制动盘的散热特性,筋板结构类型包括径向直筋板结构(Z型)、圆弧筋板结构(A型)、矩形筋板结构(R型)和梯形筋板结构(T型)。研究了制动盘的温度分布、平均对流换热系数和总热流量的变化情况。结果表明:A型制动盘结构散热性能较好;与Z型制动盘相比,A型制动盘的温度分布较均匀,温度降低了7.3%;平均对流换热系数较高;总热流量提高了32.3%。因此,A型制动盘筋板结构可有效地提高制动盘的散热特性。  相似文献   

5.
应用有限元方法对准高速机车制动盘制动过程中由于摩擦生热引起的热弹性问题进行研究.利用Pro/E软件建立制动盘三维实体模型,并将之导入ANSYS中建立制动盘的三维有限元模型.根据热力学理论建立传热数学模型以及耦合的热弹性本构模型.虚拟仿真过程中考虑热流密度和换热系数随时间变化的影响,得出随时间变化的温度场和应力场.仿真结果表明,制动盘在制动后20s最高温度达到121℃,在制动后10s最大应力达到210MPa.  相似文献   

6.
随着列车运行速度的提高,动能急剧增加,制动时产生的热能也大大增加,巨大的制动热负荷使制动盘产生很大的温度梯度,紧急制动时的制动盘温度状况与其使用寿命密切相关,而如何准确预测制动盘摩擦表面的温度及温度场分布成为研究制动盘寿命的关键技术。研究中建立制动盘的三维模型,采用热弹塑性有限元法,利用能量折算模型、摩擦功率法计算温度场载荷,仿真不同制动工况下制动盘摩擦热负荷产生的温度场。通过仿真分析发现,不同工况下制动盘面的温度变化有着相似的规律。制动开始阶段,随着强热流的不断输入,盘面在很短时间内迅速升温,很快达到峰值点,"摩擦功率"模型的最大瞬时温度普遍高于"能量折算"模型,制动盘最大瞬时温度区域皆位于散热孔的中间靠上部的微小局部区域,并且不是均匀分布。  相似文献   

7.
为了提高高速动车组制动盘的散热性能及服役寿命,借鉴自然界中生物高效散热的特点,类比自然界中三种与生俱有的高效物质交换的生物特点,建立了三种可以提升散热效果、预防疲劳热损伤的带有仿生散热筋的高速动车组制动盘模型。依据摩擦功率法提出热流配比系数法,采用有限有软件ABAQUS分析了高速动车组从时速300 km/h紧急制动下三种带有仿生散热筋制动盘的温度的大小及变化规律,并与常规圆柱散热筋制动盘的结果进行了对比。结果表明,散热效果的优良次序依次是:螺旋型散热筋、板型散热筋、根型散热筋、圆柱散热筋。表面积增加导致的对流换热加剧是散热降温增强的的主要原因。上述分析为今后仿生散热筋在高速动车组制动盘高效率散热中的应用提供了参考依据。  相似文献   

8.
分析了城轨列车在踏面制动方式下车轮踏面热疲劳裂纹产生的机理,并建立了车轮制动过程瞬态温度场三维有限元模型,采用整体输入热流和对流换热的简化模式为基础的传统理论的热应力计算方法,计算车轮在连续两次紧急制动工况下的热温度场及热应力场,为确定城轨列车制动方式及列车制动距离等技术规范提供计算依据。  相似文献   

9.
以CRH380BL型高速动车组的动车转向架上轴盘制动为研究对象,基于摩擦功率方法,对轴盘进行热负荷仿真研究及边界条件的确定。利用ANSYS软件,对动车组在350 km/h紧急制动过程中,制动盘的三维瞬态温度场在径向、轴向以及深度方向上的分布情况进行仿真,并从制动盘所能承受的最高温度方面分析其制动能力。结果表明:轴盘摩擦表面在制动初期温度呈环状分布,由于散热筋具有良好的散热功能,随后在散热筋之间的摩擦环面上产生不断地向周围扩散的团状高温区;制动后期,制动盘的温度呈层状分布,温度从制动盘的上表面自上而下递减,同时温度随着靠近轴盘轴心孔位置而渐渐降低,这表明轴盘制动过程中轴盘的温度分布受轴盘结构的影响。  相似文献   

10.
《机械强度》2017,(2):397-403
基于热传导理论和热弹性力学理论,对矿井提升机的制动过程进行了数值模拟。分析了制动过程中制动盘表面上边界条件的变化规律,并着重探讨了制动过程中制动盘表面对流换热系数的计算方法。在变物性的前提下,依据实际的几何尺寸,建立矿井提升机制动盘循环对称三维有限元模型,研究不同制动工况下制动盘的温度场和应力场分布。文中还对热应力的计算方法进行了探讨,并分析比较了各种方法的优劣性。研究结果表明:制动盘的温度应力分布与制动初始速度和加速度的大小密切相关。本研究为提升机提升速度和制动加速度的优化和高性能制动系统的设计开发提供了重要的参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号